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ENERGY-ABSORBING STRUCTURAL ELEMENT 

ABSTRACT 

An experimental inves t iga t ion  has been conducted t o  develop highly 

e f f i c i e n t  energydbsorbing s t r u c t u r a l  elements f r o m  radi-f requency trans- 

parent materials. The materials were evaluated using two types of energy 

absorption processesj t h e  fragmenting tube and t he  crushing of honeycomb 

and foamed materials. P l a s t i c  reinf'orced glass f a b r i c  tubes, employed i n  

t h e  fragmenting tube process, yielded spec i f ic  energies of 28,400 a.nd 

12,300 ft- lb/lb f o r  f ab r i c  o r i en ta t ion  i n  t h e  longi tudina l  and b o p  d i p  

ect ions respectively.  

a value of spec i f i c  energy of 14,400 ft-lb/lb f o r  a 3/16 inch c e l l  s ize ,  

9.0 l b / f t  

The crushing of nylon-phenolic honeycomb yielded 

3 density,  and with a usable stroke of 80$ of i n i t i a l  length.  

Radio frequency transmission lo s ses  were well within acceptable l i m i t s  f o r  

t h e  specif ied 100 t o  2000 megacycle frequency range investigated.  - 
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SUMMARY 
4 

An investigation was  made  to de te rmine  the efficiency of rad io  frequency 

t r anspa ren t  m a t e r i a l  deformat ion  type energy absorpt ion s t r u c t u r a l  e l emen t s  

applicable to s p a c e c r a f t  landing s y s t e m s .  Requirements  l imi ted  eff ic iencies  

to values  g r e a t e r  than 10, 000 f t - l b / lb  of ma te r i a l  and impact  load f ac to r s  

ranging from 50 to 1000 e a r t h  g-uni ts .  

ducted on the highly efficient p r o c e s s  of tube fragmenting ove r  a die using 

unreinforced and r e in fo rced  plast ic  tubes .  

crushing of nylon phenolic honeycomb of s eve ra l  ce l l  s i z e s ,  syntact ic  foam 

and nylon phenolic honeycomb. 

The  r e s u l t s  indicated the same high efficiency for  re inforced  plast ic  tubes as  

had been shown fo r  a luminum tubes f ragmented  over  s t ee l  d i e s .  

efficient tube was  tape wrapped using longitudinally or ien ted  143 E g la s s  

fabr ic  and  a n  epoxy r e s i n  s y s t e m .  The orientation of the fabr ic  is significant 

resul t ing in  eff ic iencies  of 28 ,400  and 12, 300 f t - l b / lb  of m a t e r i a l  for  longitu- 

dinal and  hoop d i rec t ion  or ien ta t ions ,  respect ively.  The  bi-direct ional  181 

fabric  with the same r e s i n  s y s t e m  produced m o r e  re l iab le  r e s u l t s  with an  

efficiency of 23, 800 f t - lb / lb  of m a t e r i a l  without spli t t ing as  o c c u r r e d  in 143 

fabric  tubes .  Another highly eff ic ient  s t ruc tu ra l  e lement  is 3 /  16-in.  ce l l -  

s i z e  nylon phenolic honeycomb, which tes ted to values of 14 ,400  f t - lb / lb  of 

m a t e r i a l ,  fo r  80% usable  s t roke .  In both the tube and  honeycomb e l emen t s  

a n  ideal load s t roke  graph  w a s  produced by the t e s t s  with no initial peaking 

and  no s h a r p  osc i l la t ions  of the load with s t roke for full deformation.  Radio 

frequency t r anspa rency  evaluations for  c rushed  and uncrushed e l emen t s  e s -  

tabl ished that  the f ragmented  tube and crushed  honeycomb p r o c e s s e s  w e r e  

the lowest in t r a n s m i s s i o n  lo s s  and  were  well within acceptable  l imi t s  for  the 

specif ied 100 to  2000 megacycle  frequency range investigated.  

P re l imina ry  investigations w e r e  con- 

T e s t s  w e r e  a l s o  conducted on the 

The  m o s t  



IN TRODUC TION 

4 

Energy absorpt ion sys t ems  which a r e  r eusab le ,  such as shotk  ab-  

s o r b e r s ,  sp r ings ,  and o ther  s y s t e m s ,  have been in use  fo r  a cons iderable  

per iod of t ime .  

sys t ems  used in the landing impact  of spacecraf t  have resu l ted  in intensive 

r e s e a r c h  in  single-application energy absorpt ion sys t ems  which mee t  weight,  

volume , and environment  l imitat ions.  

sys t ems  now include the t r ansmiss ion  of radio frequency s ignals  through the 

energy absorption sys tem before and af te r  landing impact .  

The m o r e  s t r ingent  r equ i r emen t s  fo r  energy absorpt ion 

Additional r equ i r emen t s  f o r  landing 

Single application energy  absorpt ion s y s t e m s  which have been in-  

vestigated f o r  spacecraf t  landing u s e  include: 

landing bags; the acce lera t ion  of a fluid o r  o ther  m a s s ;  f r ic t ion devices ;  

chemical  energy;  and the mechanica l  deformation of m a t e r i a l  o r  s t r u c t u r e .  

One of the m o s t  efficient p r o c e s s e s  in the mechanical  deformation ca tegory  

is the energy absorpt ion sys t em which employs frangible  me ta l  tubing as the 

working e lement .  

crushable  honeycomb e l emen t s  and c rushab le  foam m a t e r i a l s .  

types of mechanica l  deformation s y s t e m s ;  i. e . ,  the f ragmenting of a tube,  

the crushing of honeycomb, and the c rush ing  of foam m a t e r i a l ,  have been 

evaluated in th i s  p r o g r a m ,  cons ider ing  non-metal l ic  m a t e r i a l s  which a r e  

radio frequency (rf)  t r a n s p a r e n t  before  and af te r  c rush ing .  

the compress ion  of a gas  in 

Other mechanical  deformation s y s t e m s  of inte . res t  a r e  

These  t h r e e  

The pr inc ipa l  objective of th i s  p r o g r a m  effof t  h a s  been the develop- 

ment  of efficient energy  absorbing s t r u c t u r a l  e l emen t s  which a r e  rf t r a n s -  

parent  before and af te r  c rush ing .  

a r e  the nonmetall ic tubes ,  honeycomb, and foams accord ing  to  the following 

requi rements :  

The t h r e e  element  types  to  be invest igated 

2 



1. The s t r u c t u r a l  c h a r a c t e r i s t i c s  shall  be  pred ic tab le  and 
reproducible .  

Y 

2. The specific energy  obtained from the m a t e r i a l  through the 
energy-absorb ing  p r o c e s s  sha l l  be a minimum of 10 ,000  f t - lb / lb .  4' 

3 .  The ability of the p r o c e s s  to  accommodate varying s i z e s  sha l l  
be demonst ra ted  and the variation of the f o r c e  supplied by the 
p r o c e s s  with geometr ic  and ma te r i a l  p a r a m e t e r s  sha l l  be 
de te rmined .  

4. The method of fabr ica t ion  of the energy-absorbing e l emen t s  
sha l l  be defined. 

5. An analys is  sha l l  be accomplished of the energy-absorp t ion  
p r o c e s s  f o r  de te rmining  , within engineer ing accu racy  , the 
f o r c e  supplied by the p r o c e s s  a s  a function of the per t inent  
p a r  a m  et e r s . 

6 .  The rad io  frequency range  of i n t e re s t  in t h i s  application is 
100 megacycles  to  2000 megacycles .  

7.  The m a t e r i a l  employed sha l l  have a d i e l ec t r i c  constant  within 
the range  of 1 . 0  to 10.0 and a loss  tangent within the range  of 
0 . 0 3  to  0.05. 

8 .  The load range  of i n t e r e s t  depends upon the pa r t i cu la r  
application and it is fe l t  tha t  many applications would be en-  
compassed  by object ive 3 of these r equ i r emen t s .  However ,  
loads  f r o m  50 to  1000 e a r t h  g-units would have cons iderable  
application. 

3 



SYMBOLS 

E = Specific energy ,  f t - l b / lb  

D = Tube d i a m e t e r ,  in .  

SP 

t = Tube thickness  , in .  

r = Forming  radius  of d i e ,  in .  

W = Element  weight, l b  

L = Element  length,  in .  

C = End fixity 

= Shape p a r a m e t e r  
kf 

P = Axial load,  lb.  

6 = Displacement ,  in.  

E = Young’s modulus,  p s i  

Ir = P o i s s o n ’ s  ra t io  

G = Shear  modulus,  p s i  

e = S t r a i n ,  i n / in .  

= Fragment ing  s t r e s s ,  k s i  
Ff - 
F = Average crushing s t r e s s ,  k s i  
cc  

= Ultimate tens i le  s t r e s s ,  k s i  
tu 

F 

= Ultimate compress ive  s t r e s s ,  k s i  
cu 

F 

= Ultimate s h e a r  s t r e s s ,  k s i  

= Honeycomb foil gage th i ckness ,  in.  

su 
F 

f 
t 

S = Honeycomb ce l l  s i z e ,  in .  

4 



K = Honeycomb geometr ic  folding p a r a m e t e r  . 3 P = Mater ia l  densi ty ,  l b / f t  

3 
= Honeycomb c o r e  densi ty ,  lb/ft  

2 
pc 
A = Required honeycomb a r e a ,  in 

- 
P = Average crushing load,  lb .  

V = Volume of e lement ,  in 
3 

2 a = Accelera t ion ,  f t / s e c  

m Vehicle m a s s ,  s lugs 

W, = Vehicle weight,  lb.  

= Impact veloci ty ,  f t / s e c  
n 

V 

n = Impact load fac tor  acting along flight path ax i s ,  g ' s  
X 

1 

L = Usable s t roke ,  in. 

N = Number of tubes 

= Spher ica l  angle of impact  absorption m a t e r i a l  
e f fec t iveness ,  d e g r e e s  

Sample rad io  frequency inser t ion l o s s ,  db = 
S 

L 

= Input power leve l ,  dbm 

= Output power l eve l ,  dbm 

= Reflected power l eve l ,  dbm 

i 
P 

P 

P 

0 

r 

t *  = Relat ive absolute complex d ie lec t r ic  constant  
I 

= Real  re la t ive  d ie lec t r ic  constant i 

c = Relat ive l o s s  fac tor  

5 



tan S = Loss tangent 

a = Quality factor 

= Operating wavelength, meter 
A 0  

b 

= Relative compound dielectric constant of a mixture 
of two materials ‘m 

6 



MATERIALS SELECTION 

Genera l  Cons idera t ions .  - The efficiency of a mater ia l -deformat ion-  
7 

type of energy  absorpt ion p r o c e s s  i s  a function of m a t e r i a l  p r o p e r t i e s  and 

element  geometry .  

in th i s  evaluation: the frangible  tube,  the crushable  honeycomb, and the 

c rushab le  foams .  

r e q u i r e s  an evaluation of detai l  geometr ic  var iables:  1) in the tube f r a g -  

menting p r o c e s s ,  2)  the honeycomb crushing and folding of the ce l l  wa l l s ,  

and 3) the foam crushing  o r  crumbling cha rac t e r i s t i c s .  

two p r i m a r y  r equ i r emen t s  f o r  these  types  of e l emen t s  which l imi t  the u s e  

of effective m a t e r i a l s  and p r o c e s s e s  which have been used  before;  they a r e  

a specific energy  absorbing capabili ty of 10 ,000  f t - l b / lb  minimum,  and a 

rad io  frequency t r anspa rency  between specified l imi t s  before  and af te r  the  

e lements  have been used  fo r  energy absorption. 

The re  a r e  th ree  types of e lements  which a r e  cons idered  

Selection of m a t e r i a l s  for each of these  types of e l emen t s  

This p rogram h a s  

A rev iew of prev ious  invest igat ions in  mechanical  deformation 

e l emen t s  provided some  indication of ma te r i a l  mechanical  p rope r t i e s  

d e s i r e d  in the r f - t r anspa ren t  e lements .  

efficiency of mechanica l  deformation types of energy-absorp t ion  s y s t e m s  

based  on previous  invest igat ions.  

m a t e r i a l  when f ragmented  over  a die i s  shown to be the  mos t  efficient,  with 

a value of 31,000 f t - lb / lb .  

much m o r e  efficient than the mos t  f requent ly  used  single-application type 

s t r u c t u r a l  e l emen t s  such as ba l sa  wood, aluminum honeycomb, or p r e s s u r -  

i z e d  thin-walled meta l l ic  cy l inders .  

is  achieved b y  working the 2024-T3 m a t e r i a l  t o  90% of the  compress ive  

yield.  

r a t i o  which does  not c a u s e  loca l  cr ippl ing of the tube, and column length 

p r o p e r t i e s  which are not c r i t i ca l .  

p r i m a r y  cons idera t ion  in  the select ion of non-metal l ic  tubing m a t e r i a l s .  

F igure  1 c o m p a r e s  the r e l a t ive  

The 2024-T3 aluminum alloy tubing 

The  tube fragmenting p r o c e s s  is  shown t o  be 

T h i s  high tube-fragmenting e f f ic iency  

Other  l imi t ing  p a r a m e t e r s  f o r  the tube a r e  a d i ame te r /wa l l  th ickness  

These  c h a r a c t e r i s t i c s  would a l s o  be a 
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The aluminum honeycomb shown in  F igure  1 would not qualify fo r  

the 10, 000 f t - l b / l b  efficiency r e s t r i c t ion  considered in  th i s  investigation. 

Significant p a r a m e t e r s  for  honeycomb crushing have been invest igated 

and have been shown to be the yield s t rength of the m a t e r i a l  and the r a t io  

of the c o r e  foil  gage to  the ce l l  s ize .  The smal les t  ce l l  s ize  for  the 3003- 

H38 honeycomb c o r e  m a t e r i a l  p resented  is not included in  the compar ison  

and would improve  the efficiency. The ma te r i a l  yield s t rength  of 5052-H38 

aluminum al loy c o r e  m a t e r i a l  i s  37,000 psi  compared  to  27 ,000  psi  for  the 

3003-H38. Th i s  m a t e r i a l  p roper ty  improvement  would r e s u l t  in consider  - 
able  efficiency improvement  and is a p r i m a r y  considerat ion in  the 

select ion of non-metal l ic  honeycomb c o r e  ma te r i a l s .  

c u r v e s  are a l s o  shown to be below the minimum 10, 000 f t - lb / lb  r equ i r e -  

ment ;  however,  new types  of foam a r e  available with cons iderable  i n c r e a s e  

in c rush ing  s t rength  efficiency. 

4 

The foam efficiency 

An important  additional consideration in energy absorpt ion e lements  

development is  the shape of the load deformation c u r v e .  

un i form load with deformation;  i. e .  , a rectangular  shaped graph.  

shape of the t h r e e  e lement  types to be considered in th i s  p rogram i s  p r e -  

sented f o r  f ragmented  aluminum tubes ,  c rushed  aluminum honeycomb, and 

c r u s h e d  polyurethane foam in F igu re  2 based on the r e s u l t s  of previous 

inves t iga tors .  

to have an ini t ia l  s h a r p  peak fo rce  which is up to one th i rd  m o r e  than the 

ave rage  f ragment ing  f o r c e .  

of deformation i s  an osci l la t ing value not shown in the graph.  

a lso  shows that  a t a p e r e d  wall th ickness  at the end of the tube a l t e r s  t h i s  

ini t ia l  peak f o r c e ,  and tha t  pre- f ragment ing  the end of the tube a l so  r educes  

th i s  peak f o r c e ,  but both of t hese  methods c a u s e  a l o s s  in total  lodd s t roke  

a r e a .  An additional c h a r a c t e r i s t i c  of the fragmenting tube which i s  shown 

by these  c u r v e s  i s  that  i t  may be fragmented f o r  i t s  full length.  

An ideal  shape is a 

The actual  

The highly efficient 2024-T3 aluminum alloy tubing is shown 

The actual  f ragmenting fo rce  over  the fu l l  range 

F igu re  2 

9 
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The aluminum honeycomb curve  also has  an ini t ia l  peak s t r e s s  which 

i s  twice the av'erage c rushing  s t r e s s ;  this  too can be removed by p r e -  

c rush ing .  ,There a r e  s m a l l e r  f luctuations in c rush ing  s t r e s s  than in the tube 

f ragment ing  load fluctuation fo r  the en t i re  s t roke except fo r  a peaking of 

s t r e s s  again at 7570 of the total  honeycomb element length; this  r e s u l t s  in a 

usable  s t roke  l imitat ion f o r  honeycomb. 

The foam e lement  load deformation shape r e q u i r e s  a reasonably high 

s t r e s s  level  before  the m a t e r i a l  yields to a constant s t r e s s  with deformation 

until about 6070 of the to ta l  length i s  reached at which point the s t r e s s  begins  

to rapidly r i s e  to a "sol id  height" value.  Foam e lement  load deformation 

c u r v e s  a r e  l ike the honeycomb element  curves  in that both a r e  l imi ted  by 

an effective length of s t roke  but the foam curve does not s t a r t  with a s h a r p  

peak.  

Candidate R F -  Transpa ren t  Fragmentinp Tube Element  Mate r i a l s .  - 
Candidate m a t e r i a l s  cons idered  f o r  this  p rogram a r e  in two ca tegor ies :  

purchased  unre inforced  p las t ic  tubes and reinforced tubes ,  and fabr ica ted  

g las  s - f iber  re inforced  p las t ic  tubes.  

f r o m  vinyl and high-impact  polystyrene.  

cons is ted  of a phenolic r e s i n  sys tem with cotton f a b r i c  re inforcement .  The 

f i r s t  g l a s s - f ibe r - r e in fo rced  tubes to be fabr ica ted  w e r e  with phenolic r e s i n  

so that a compar i son  could be  made with the purchased  co t ton- re inforced  

phenolic tubes .  

methods  and polyes te r  r e s i n .  

Different  types  of f a b r i c  weaves and direct ion of fabr ic  layup with r e spec t  

to the hoop and longitudinal direct ion of the tube were  a l so  included in the 

va r i e ty  of tubes  f ab r i ca t ed .  

The unreinforced tubes were  made  

The pu rchased  re inforced  tubes  

Additional f ab r i ca t ed  tubes w e r e  made using hand layup 

Epoxy r e s i n  was substi tuted fo r  a few tubes .  

The se lec t ion  of a m a t e r i a l  f o r  tube fragmenting t e s t s  which is a l so  

capable  of meet ing  the radio f requency  t ransparency  r equ i r emen t s  l imi t s  

se lec t ion  to non-me ta l l i c s .  The mos t  promising of the non-metal l ic  

11 



m a t e r i a l s  when cons idered  on a s t rength ldens i ty  b a s i s  a r e  the g l a s s - f i b e r -  

re inforced plast ic  (GRP)  lamina tes .  

tion efficiency c u r v e s ,  F i g u r e  1 ,  the 2024-T3 tube m a t e r i a l  achieved high 

efficiency by working to  90% of the 42,000 ps i  compress ive  yield s t rength .  

Table I provides  a compar ison  of the p rope r t i e s  of t h i s  i sen t ropic  aluminum 

alloy with the most  efficient epoxy r e s in  sys tem g la s s - f ibe r - r e in fo rced  

laminate  m a t e r i a l  f o r  two f ab r i c  weaves.  Since th i s  l a t t e r  m a t e r i a l  is 

or thot ropic ,  s t rength  in the 0 deg ree  and 90 degree  d i rec t ions  mus t  be 

considered and the d i rec t iona l  s t rength  at o ther  angles  i s  a l so  important  f o r  

c r o s s  lamination. 

p rope r t i e s  f o r  cot ton-reinforced phenolic , polyes te r  with g l a s s  re inforcement ,  

and epoxy with g l a s s  re inforcement  f o r  the b i -d i rec t iona l -s t rength  181 f ab r i c  

weave and fo r  the unid i rec t iona l -s t rength  143 f a b r i c .  

with 181 f ab r i c  re inforcement  is shown to have a s t rength  comparable  to the 

2024-T3 aluminum alloy in compress ion ;  however ,  the densi ty  i s  two th i rds  

that of aluminum al loys.  

In a d iscuss ion  of the energy abso rp -  

c 

F i g u r e s  3 and 4 p re sen t  angular s t rength and s t i f fness  

The epoxy r e s i n  sys t em 

Also shown in F i g u r e s  3 and 4 a r e  the straight-line-type-stress- 

s t r a i n  cu rves  and the a lmost  l i nea r  tangent modulus c u r v e s .  

modulus c u r v e s  for  181 f ab r i c  and 143 f ab r i c  with an  epoxy r e s i n  sys t em 

have been replot ted in F i g u r e  5 fo r  compar ison  with m e t a l s .  A prac t ica l  

l imitation for  the geometry  of tubes  used  in  tube-fragmenting energy-  

absorption applications i s  i t s  Eu le r  column s t rength  which i s  a l s o  dependent 

on the ma te r i a l  tangent modulus.  

eff ic iency compar ison  of s tab le  sect ion columns of epoxy r e s i n  sys tem C R P  

columns fo r  two f ab r i c  weaves compared  with meta l l ic  m a t e r i a l s .  

G R P  mater ia l  i s  seen  to  be competi t ive wi th  the bes t  meta l l ic  m a t e r i a l s ,  and 

the re fo re  column l imi ta t ions  would not be c r i t i ca l  for  C R P  f rament ing  tubes.  

These  tangent 

F i g u r e  6 i s  an opt imum column weight 

The 

P re l imina ry  F ragmen t ing  Tube T e s t s .  - A pre l imina ry  fragmenting 

tube t e s t  p rogram was conducted on t inreinforced and re inforced  non-metal l ic  

candidate m a t e r i a l s  fabr ica ted  a s  tubes  in  o r d c r  to indicate t h e  mos t  

12 
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promis ing  m a t e r i a l s  fo r  the p r o g r a m .  

p r o c e s s  of a'tube on the die  fo r  a longitudinally or ientated GRP lamina te  

using 142,fabric  weave. 

f r o m  an epoxy r e s i n  sys t em to the shape shown in F i g u r e  7.  The die  guide 

shaft  is  one-inch long with the end rounded to e l iminate  gouging of the tube 

wal ls .  The d i ame te r  of the die i s  made approximately 0.004 inch s m a l l e r  

than the inside d i ame te r  of the tube,  and the t rans i t ion  between the shaft 

and the forming  groove section of the die w a s  smooth.  

F igure  7 shows the fragmenting 

The d ies  were  fabricated f rom mild s tee l  o r  c a s t  

P r e l i m i n a r y  t e s t  evaluations w e r e  conducted on the 12,000-lb 

capaci ty  universa l  tes t ing machine a t  a ra te  of loading of 1.0 inch 

p e r  minute .  Automatic load deformation plots of each t e s t  were  r eco rded  

and the t e s t  spec imens  were  weighed before and af te r  each t e s t  to be used  

in the calculation of the specific energy absorption. 

candidate 1 .0- inch d i ame te r  tubing af te r  t e s t s .  The unreinforced tubing has  

a s t r e s s - s t r a i n  cu rve  shape which i s  s imi l a r  to the load deformation g raphs  

fo r  foam m a t e r i a l s ;  i. e .  , the m a t e r i a l s  have a definite yield point and a 

cons iderable  elongation under  s teady s t r e s s  until  f a i lu re .  This m a t e r i a l  

cha rac t e r i s t i c  fo r  vinyl as shown resu l ted  in the fa i lure  of these  tubes to 

commence  fragmenting even when spli t  longitudinally at in te rva ls  before  

tes t ing.  

i t  were  a sol id  g l a s s  tube ma te r i a l .  

cotton f ab r i c  a l so  sha t t e red  a s  shown and repeatedly r e s i s t ed  fragmenting 

when t e s t s  w e r e  conducted on the var ious  d ies  shown in  F igu re  9 .  

the hand layup phenolic r e s i n  sys tem reinforced with 181 E g la s s  fabr ic  w a s  

t e s t ed ,  good f ragment ing  action w a s  observed .  

p rope r t i e s  a r e  interchangeable  with the phenolic r e s i n  according to  MIL-  

HDBK-17, fu r the r  tubing t e s t s  w e r e  conducted with the lower cos t  polyester  

r e s i n  s y s t e m .  

e s t e r  r e s i n  sys t em tube reinforced with 181 E g la s s  fabr ic .  

F i g u r e  8 shows typical 

The polystyrene m a t e r i a l  sha t te red  in each t e s t  a lmost  a s  though 

The phenolic r e s i n  re inforced with 

When 

Since polyester  m a t e r i a l  

F i g u r e  10 i l l u s t r a t e s  the good fragmenting action of a poly- 
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Figure  10. Typical 1.0 Inch I. D. 0.040 Wall Polyes te r  Res in  with 
I 181 "E" Glass  Fabr i c  Fragmenting Tube Sequence 
I 
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The r e s u l t s  of the p re l imina ry  tube t e s t s  f o r  the reinforced plast ic  
& 

laminated tubing a r e  shown in Table 11. 

which were  fabr ica ted  with epoxy r e s in  s y s t e m s ,  the tubing mater iad was  

polyester  r e s i n  with 143 o r  181 f ab r i c  weave laminated most ly  in t h r e e  o r  

fou r  plies at  0 . 0 1  inch p e r  ply. 

l imi ted  to a 1. 0-inch d i a m e t e r .  

l b / lb  were  achieved with the polyes te r  r e s in  sys t em.  

values  were  achieved with the higher  s t rength  epoxy r e s in  s y s t e m ,  which 

resu l ted  in one value of 25 ,  900 f t - l b / lb  f o r  a t / r  of 0 .  741. 

displacement  graphs  a r e  p re sen ted  in F i g u r e  11 fo r  both unre inforced  

tubing which spli t  o r  did not f r agmen t  and for the polyes te r  r e s i n  sys t em 

reinforced with 181 g l a s s  f ab r i c .  

polyester  tube fragmenting load d isp lacement  g raphs  is  the absence  of an 

init ial  peak load; i .  e .  , the G R P  tubing demonst ra ted  a load d isp lacement  

g raph  shape which approached the ideal .  

considerably l ighter  than the s t ee l  d i e s  was  l imi ted  because  d ie  choking 

was  experienced due to  the low bear ing  s t rength  of the epoxy, and in some  

c a s e s  the d i e s  f r a c t u r e d  as shown in F i g u r e  9. 

Except  fo r  the four  tubes noted,  

It will be noted that the tubing s ize  was  

Specific s t rengths  as  high as 2 1 , 8 0 0  f t -  

But the highest  

Typical load 

An outstanding cha rac t e r i s t i c  of the  

The u s e  of epoxy d i e s  which w e r e  
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Candidate F o a m  Element  Mate r i a l s .  - A su rvey  of the l i t e r a t u r e  

and of mate;ials produced data  that v e r y  few foams  would qualify for  the 

m i n i m u q  specif ic  ene rgy  of 10,000 f t - lb / lb  requi rement .  

foams would be useful a s  a f i l l  m a t e r i a l  in a honeycomb composi te  s y s t e m  

but the following rigid foams were  the only types which indicated an  accep t -  

able  specif ic  s t rength:  

The polyurethane 

1)  

2)  

3) A r igid c e r a m i c  foam. 

4) 

A rigid pack-in-place polyurethane foam. 

A rigid pack-in-place epoxy foam. 

Glas s  macro-bal loons and epoxy r e s i n  ma t r ix .  

The l a t t e r  foam s y s t e m  is a combination of bonding agent, epoxy r e s i n ,  

loaded with g l a s s  macro-bal loons.  

s p h e r e s  which in this  c a s e  a r e  not mic rosphe res  s ince they a r e  1 / 8  inch in 

d i a m e t e r .  

i t  was developed a s  a buoyancy m a t e r i a l  f o r  deep  ocean submergence  appli-  

cat ions where  high crushing s t rength  and low densi ty  a r e  the opt imum 

requ i r emen t s .  

The macro-bal loons a r e  hollow g l a s s  

This  pa r t i cu la r  foam s y s t e m  was the most  promis ing  because  

P r e l i m i n a r y  F o a m  Element  Crushing T e s t s .  - A pre l imina ry  t e s t  

was conducted on a c e r a m i c  foam (densi ty  of 12-lb/f t3)  which might c rumble  

to powder a f t e r  c rush ing  and the re fo re  be useful  for  the rad io  frequency 

t r a n s p a r e n c y  r equ i r emen t  a f te r  crushing.  The es t imated  specif ic  ene rgy  

capabi l i ty  f o r  this  m a t e r i a l  was considered to be too low fo r  u se  by i t s e l f ,  

but c h a r a c t e r i s t i c  load deformation curves and the c rushed  m a t e r i a l  condi- 

tion might indicate  i t s  usefulness  in combination with a honeycomb m a t e r i a l .  

F i g u r e  12 shows the t e s t  setup for  a rectangular  e lement  shape.  

t e s t s  conducted the m a t e r i a l  f i r s t  crumbled around the edges a t  the point 

of load appl icat ion and load built  up to a proport ional  l imi t  which became  

rounded, then a sudden d rop  off of the load was experienced followed by 

continued g radua l  laad  reduction with s t roke .  

In a l i  

25 



Figure  12. C e r a m i c  F o a m  T e s t  Set-up, Typical; Universa l  Test ing Machine 
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l O O T H S  l i  

F i g u r e  1 3 .  C e r a m i c  Foam Specimen Showing F i r s t  Signs of Failure 

27 
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At the point of sudden load d r o p  off a specimen such as that shown in 

F igu re  13  wits examined ,  and i t  w a s  determined that the spec imen had spl i t .  

This  spliiting action var ied  with the s ize  of the spec imen.  F i g u r e  14 shows 

t w o  s i z e s  of spec imens  before  and af ter  testing indicating that the m a t e r i a l  

does  c r u s h  to  a powder but that  the specific energy  and the shape of the load 

deformation c u r v e  w a s  not acceptable for  fur ther  evaluation. 

Candidate Honeycomb Mater ia l s .  - The r e s u l t s  of prev ious  inves t i -  

ga to r s  had indicated that  the specific energy efficiency of honeycomb, 

pa r t i cu la r ly  the a luminum a l l o y  honeycomb ma te r i a l ,  was a function of the 

m a t e r i a l  yield s t rength  and the ra t io  of core  cel l  s i z e  to foil thickness .  A 

su rvey  of p roduce r s  of honeycomb indicated that  higher  specific ene rgy  

could be  obtained by combining a luminum honeycomb with foam. 

compar i sons  of the compress ive  s t rengths  of a luminum honeycomb with 

c rush ing  s t rength,  and  by  re la t ing  the r e su l t s  to the compress ive  s t rength  

dens i ty  values  of nylon phenolic honeycomb, t h r e e  s i z e s  of honeycomb in  

th i s  material were  se l ec t ed  for pre l iminary  t e s t s ,  as follows: 

By making 

3 
1) N P  3 /16  -112-9 .0 ;  9 .  0 l b / f t  density;  es t imated  E = 13 ,600  

SP ft  - l b / lb  

3 
2) N P  1 / 4  -21-8 .0 ;  8 . 0  lb / f t  density;  es t imated  E = 11,700 

SP f t - lb / lb  

3 
3 )  N P  3 / 8  -21-4.  5 ;  4 . 5  lb / f t  density;  e s t ima ted  E = 5 , 4 0 0  

SP f t  -lb/ lb.  

The  e s t i m a t e s  on the specif ic  energy  efficiency f o r  the above th ree  honey- 

c o m b  e l emen t s  w e r e  based  on available compress ive  s t rength  va lues  which 

w e r e  divided by two to es tab l i sh  an assumed crushing  s t rength.  

P r e l i m i n a r y  Honeycomb Element  Crushing  Tes t s .  - P r e l i m i n a r y  

t e s t s  w e r e  conducted on  honeycomb e lements  in the 12,000-lb capaci ty  t e s t  

mach ine .  

the c h a r a c t e r i s t i c s  of a composi te .  

In s o m e  spec imens  a polyurethane foam was  added to evaluate  

The r e su l t s  a r e  tabulated in Table  111. 



Cell Size 
(in. ) 

114 
114 
114 
114 
114 
114 
114 
114 
1 / 4  
114 
1 / 4  
114 
114 
114 
311 6 
31  8 
114 
318 
114 
1 / 4  
3/16 
3/16 
1 / 4  

TABLE 111. PRELIMINARY TEST RESULTS, 
NYLON PHENOLIC HONEYCOMB 

Specimen 
Size 
( in .  ) 

2-1/4xZx2 
2X2X2 
1 x2x2 
1 x2x2 
1 x2x2 
1 x2x2 
1 - 1 / 4 ~ 2 ~ 2  
4 x 4 ~ 2  
4 x 4 ~ 2  
1 x4x2 
1 x4x2 
11 2 x 4 ~ 2  
1 x4x2 
2X2X2 
4 x 4 ~ 2  
4X4X4 
4 x 2 ~ 2  
4X4X4 
4 x 2 ~ 2  
2X2X2 
4 x 2 ~ 2  
4 x 2 ~ 2  
4 x 4 ~ 2  

Foam 
:::Den s i t  y 

(Ib/  f t 3 )  

Ff 

(Ps i )  

42 7 
284 

2 50 
566 
59 5 
522 
21 1 
200 
91 0 
41 6 
278 
921 
522 

194 
788 
344 
300 
600 
344 
48 1 
394 

- 

- 

7. 7 
5. 1 

4. 5 
1 0 . 2  
1 0 . 7  
9 . 4  
3 . 8  
3 .  6 

16. 4 
7 .  5 
5. 0 

16. 6 
9 .  4 

6.  2 
14.  2 
1 1 . 0  

5 . 4  
10.  8 

5. 5 
7 . 7  
7 . 1  

- 

- 

xc Polyurethane Foam 



Due to the l imi ted  capaci ty  of the t e s t  machine,  e lements  of the potentially 

mos t  efficie'nt ce l l  s i ze  had to be tes ted in s m a l l e r  s i z e s  than were  con- 

s idered  $0 provide useful information,  because of the influence of the 

boundary ce l l  fa i lure  on the total  ce l l  failure pa t t e rn .  

the honeycomb with foam was to improve  the efficiency sufficiently to mee t  

minimum 10,  000 f t - l b / lb  s t rength requi rements .  It was concluded that all 

fu tu re  spec imens  should be l a r g e r  to provide m o r e  consis tent  and m o r e  

meaningful r e s u l t s .  

machine.. 

l imina ry  honeycomb t e s t s  for  unfilled and foam -fi l led honeycomb. 

foam-fi l led honeycomb had a definite initial peak and a final buildup at the 

end of the s t roke .  The honeycomb by itself showed no init ial  peak a s  was  

exper ienced  in  the aluminum honeycomb t e s t s .  

The effect of filling 

This decis ion would requi re  the u s e  of a l a r g e r  t e s t  

F i g u r e  15 shows typical load deformation plots  for  these  p r e -  

The 
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F igu re  15. Compar i sons  of Nylon Phenol ic  Honeycomb 1 / 4  in. Cel l  Size 
With and Without 4 l b / c u  f t  Po lyure thane  Foam Fi l l ing 
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SPECIMEN FABRICATION 

. 
Plas t i c  Tube Fabr ica t ion .  - The f ibe rg la s s - r e in fo rced  polyes te r  and 

epoxy tubes used  throughout the t e s t  p rog ram were  fabr ica ted  f r o m  the 

following commerc ia l ly  impregnated  g l a s s  fabr ic :  

MILITARY 
SPEC 

MIL -R - 9 3 00 
MIL-R-9300 
MIL-R-  7575  
MIL-R-7575 

RESIN FABRIC 
TYPE STY LE 

EPOXY 143 
EPOXY 181 
POLYESTER 181 
POLYESTER 143 

The m a t e r i a l s  l i s t ed  above were  selected for  tubular t e s t  spec imen 

construct ion because  pas t  exper ience  indicated they were  of high and con- 

s i s t en t  quali ty.  Tubes  were  fabr ica ted  f ro in  these  m a t e r i a l s  by two bas i c  

p rocedures  - -  hand layup and machine wrap. 

Hand Layup. - The hand layup technique cons is t s  of cutting a 10-  

inch-wide s t r i p  of p re - impregna ted  g l a s s  fabr ic  ( p r e - p r e g )  in sufficient 

length to  allow for  the r equ i r ed  number of tube p l ies .  

m a y  be  taken in e i t h e r  the warp o r  fi l l  d i rect ion of the p r e - p r e g ,  depending 

upon the d e s i r e d  f iber  or ientat ion in  the resu l tan t  tube.  

edge of the s t r i p  of p r e - p r e g  i s  p r e s s e d  f i rmly  aga ins t  the su r face  of a 

1 .  0-inch d i ame te r  steel mandre l  which has prev ious ly  been coated with 

r e l e a s e  agent .  

m a n d r e l  the d e s i r e d  number  of t i m e s  t o  obtain the r equ i r ed  tube wall 

th ickness .  

t ight wrap  f r e e  of wr inkles  and entrapped a i r .  

The 10-inch width 

The 10-inch 

The p r e - p r e g  s t r i p  is carefu l ly  wrapped around the 

C a r e  m u s t  be  employed during the wrapping to a s s u r e  a smooth,  

Af te r  the d e s i r e d  number  

of p l ies  have been wound on the mandre l ,  the p r e - p r e g  s t r i p  is cut  to a 

length which will j u s t  allow the bottom edge to  ove r l ap  the f i r s t  ply edge 

1 / 2  inch. One end of the tube is  built up by wrapping an  additional ten p 

of 1 / 2  inch wide p r e - p r e g  on i t ;  th i s  build-up will s e r v e  a s  a bear ing  

by  

ie  s 
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s u r f a c e  reinforcement  during the s t r ipping operat ion.  

then sp i r a l  wrapped with a 1-inch-wide polyvinyl alcohol tape in  such a 

manner  as t o  over lap  one half of the tape  width on each  success ive  tu rn .  

s p i r a l  wrapping p rocedure  is continued the whole length of the mandrCl and 

then repeated in  the s a m e  overlapping fashion back along the tube length in 

the r e v e r s e  direct ion.  

f i lm covering the p r e - p r e g  layup. 

method of applying p r e s s u r e  to  the p las t ic  layup during the heat cur ing  

operation; the f i lm sh r inks  under  heat and the attendant hoop tension p r e s s u r e  

is applied to the tube during c u r e .  

c i rculat ing oven and cu red  according to  the following schedule:  

The p r e - p r e g  layup i s  

' 
The 

This  r e s u l t s  in a double overlapping l aye r  of p las t ic  

The plast ic  f i lm o v e r - w r a p  s e r v e s  a s  the 

The m a n d r e l s  a r e  then placed in an  air 

RESIN CURE CYCLE 

Polye s t e r  3 hour s  at 27S°F 

EPOXY 4 hour s  at 32S°F 

After the tube h a s  been c u r e d ,  the fi lm ove r -wrap  is removed and the tube 

s t r ipped  f r o m  the mandre l .  

of a s t r ipping block,  a mandre l  punch, and a s t r ipp ing  s leeve .  The s t r ipping 

block is a thick,  flat piece of me ta l  with a 1 .00- inch-d iameter  hole which 

s l i p s  over  the  mandre l  and b e a r s  against  the tube a t  the builtup end. The 

mandre l  punch is a piece of rod  stock having a d i a m e t e r  sl ightly l e s s  than 

the mandre l  i t s e l f .  

s t r ipping block in posit ion.  

and mandre l  punch a r e  placed on the s t r ipp ing  s l eeve ,  which is s imply a 

1-1/2- inch I .D .  pipe 14 inches  long. 

by press ing  the mandre l  into the s t r ipp ing  s leeve  with the m a n d r e l  punch. 

s t r ipping block is supported by the s t r ipp ing  s leeve  and b e a r s  against  the 

tube,  thus removing the tubular  spec imen f r o m  the mandre l .  

then t r immed  and the ends squa red  off by m e a n s  of a diamond cut-off wheel 

and submitted fo r  tes t ing.  

The tube s t r ipping is accomplished by means  

This  punch is placed on the end of the  m a n d r e l  with the 

This  a s sembly ,  the s t r ipping block, mandre l ,  

The tube is ex t r ac t ed  f r o m  the mandre l  

The 

The tubes  a r e  
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Machine Wrap. - Additional tubes  were  fabr ica ted  by the u s e  of a 

tape wrapping machine.  As i l lus t ra ted  in F igu res  16 and 17, th i s  machine 

is normal ly  used  to  wrap  thick section plastic p a r t s  used f o r  high t e m p e r -  

a tu re  envi ronments ,  but is equally capable  of wrapping thin wall tubes.  The 

proceduz-e f o r  wrapping these  tubes  i s  a s  follows: 

P l a c e  the mandre l  coated with par t ing  agent in the r o t a r y  chuck. 

P r e s s  the leading edge of the p r e - p r e g  s t r i p  against  the mandre l  
surf  ace .  

C lose  the p r e s s u r e  r o l l e r s  against the mandre l  and apply 3000 
l b  p r e s s u r e .  

S t a r t  the machine and wind a t  20 rpm.  
of p l ies  using modera t e  tension. 

Stop the machine and cut the p re -p reg  so that it ove r l aps  the 
f i r s t  edge of the m a t e r i a l  s t r i p  by 1 / 2  inch. 

R e s t a r t  the machine and run  for two minutes  maintaining 3000 
l b  p r e s s u r e  on the p r e s s u r e  r o l l e r s .  

Stop the machine and r e l e a s e  p r e s s u r e  f r o m  the p r e s s u r e  
r o l l e r s .  

Wind t en  additional p l i e s  of 112-inch-wide p r e - p r e g  s t r i p s  on 
one end of the tube.  

Sp i r a l  w r a p  two l a y e r s  of polyvinyl alcohol tape on the layup 
in a manner  s i m i l a r  to  that  descr ibed  f o r  the hand layup tubes .  
Maintain modera t e  tension on the  tape during winding opera t ion .  

Stop the machine ,  remove  the m a n d r e l  f r o m  the chuck,  and c u r e ,  
t r i m ,  and f in i sh  in the s a m e  manner  as the hand layup tubes .  

Wind the d e s i r e d  number  

Miscel laneous Specimen P repa ra t ion .  - In addition to f i b e r g l a s s -  

re inforced  p l a s t i c  t ubes ,  the following types of spec imens  w e r e  a l s o  p r e -  

pa red  and t e s t e d  during the p rogram:  purchased tubing ( thermose t t ing  and 

the rmop las t i c ) ,  c e r a m i c  foam,  epoxy syntactic foam,  f ibe rg la s s  re inforced  

phenolic honeycomb, and honeycomb stabil ized with syntact ic  foam. 

Tubes .  - These  p las t ic  tubes were purchased  with a nominal  I .D. of 

1 .0  inch and r e p r e s e n t  the var ious  types of commerc ia l ly  available tubing. 
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Figure  17. Rol le rs  Provide Controlled Hydraulic P r e s s u r e  
f o r  Debulking Plast ic  Mater ia l  
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The only spec imen p repa ra t ion  r equ i r ed  w a s  to cut the tubing in column- 

s tab le  lengths.  

t e s t  the fabr ica ted  tubing spec imens .  

T h e s e  spec imens  were  t e s t ed  using the same die: u sed  to 

. 
C e r a m i c  Foam.  - The  c e r a m i c  foam was pu rchased  in the f o r m  of 

a rectangular  block. T e s t  spec imens  were  cut f r o m  this  block by m e a n s  

of a diamond cut-off wheel, employing e x t r e m e  c a r e  to machine  opposi te  

spec imen f aces  pa ra l l e l .  

Epoxy Syntatic F o a m .  - Syntactic foam used  to  p r e p a r e  t e s t  spec i -  

m e n s  was formula ted  in t h r e e  different  dens i t ies  by ad jus tment  of the 

amounts  of the components blended. 

the foam were  an  epoxy r e s i n  m a t r i x  and small, hollow g la s s  m a c r o -  

balloons.  

based  matr ix;  the g l a s s  macro-ba l loons  a r e  hollow, thin-walled r e s i n  

s p h e r e s  ranging in  d i a m e t e r  f r o m  0.130-0.180 inch and having a bulk 

dens i ty  of 15.6 l b / f t  . 
5 h o u r s  a t  200" F followed by 2 +nur s  a t  300"  F. 

p r e p a r e d  by two different  methods:  

dimensions and, 2 )  the spec imens  were  cut f r o m  a l a r g e  p r e - c a s t  block to  

net  dimensions.  Spec imens  c a s t  to  ne t  d imens ions  had undamaged p las t ic  

s p h e r e s  throughout the sample  while spec imens  cu t  f r o m  the  p r e - c a s t  block 

had f r ac tu red  s p h e r e s  on the machined  f aces .  

t e s t ed  in the p r o g r a m .  

The components used  to f o r m u l a t e  

The g l a s s  macro-ba l loons  a r e  suspended in  a one p a r t  epoxy- 

3 The epoxy r e s i n  s y s t e m  r e q u i r e s  a hea t  c u r e  of 

T e s t  spec imens  were  

1 )  the spec imens  were  c a s t  to  ne t  

Both types of spec imens  were  

F i b e r g l a s s  Reinforced  Phenol ic  Honeycomb. - Honeycomb spec imens  

were  p repa red  by sawing s t anda rd  d imens ion  spec imens  f r o m  a l a r g e  honey- 

comb block. 

s i z e s  - 3/16, 1 / 4 ,  and 3 / 8  inch. 

Spec imens  were  p r e p a r e d  and  t e s t ed  in t h r e e  d i f fe ren t  ce l l  

Honeycomb-Syntactic F o a m .  - The  composi te  syntact ic  foam-honey-  

comb spec imens  w e r e  p r e p a r e d  by cast ing the foam r e s i n  in the 3 / 8  inch ce l l  

s i ze  honeycomb spec imens .  Composi te  spec imens  were  p r e p a r e d  using two 



different  densi ty  foam formula t ions .  The foam was  heated to  lower the 

viscosi ty  &d allow f o r  pouring of the lower densi ty  formulat ion into the 

honeycomb c e l l s .  

f ac  tu re  r ' s re c o m m  ended p roc edu r e .  

The spec imens  were  then cu red  according to  the manu-  

Fabr ica t ion  of P la s t i c  Dies .  - Fabr ica t ion  of the epoxy p las t ic  d i e s  

was  accomplished by using the me ta l  die  as  the pa t te rn  m a s t e r  according to  

the following procedure :  

Coat  the me ta l  die  with r e l ease  agent. 
s u r f a c e s  of a 6 oz dixie  cupwith the par t ing  agent.  

Also coat  the inner  

Pos i t ion  the die in the center  of the dixie cup and f i l l  to a 
leve l  covering the die with a s i l icone e l a s tomer  cas t ing  
compound. 

Allow to c u r e  and s e p a r a t e  metal  die f r o m  si l icone e l a s t o m e r  
pa t te rn .  

Coat  the molding su r face  of the RTV H11 pa t t e rn  with release 
agent  #225 and fi l l  cavity with Cast ing Epoxy. 

Allow epoxy to  c u r e  and remove  the c a s t  die f r o m  the 
s i l icone e l a s tomer  mold. 
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MECHANICAL DEFORMATION TESTS 

Tes t  Equipment.  - The ma jo r i ty  of the mechanical  c rush ing  t e s t s  

and all of the tube f ragment ing  t e s t s  w e r e  conducted on the 12,000-lb 

maximum-capaci ty  universa l  t e s t  machine ( s e e  photograph of fig- 

u r e  12). 

m e a s u r e s  head t r ave l  o v e r  10 .0  inches of gage length. 

equipped with an X - Y  r e c o r d e r  f o r  graphical ly  record ing  load-deformation 

c u r v e s .  This machine is a l so  equipped with a load p a c e r  device ,  a load 

cycling mechan i sm,  and constant  head t r ave l  cont ro l  f r o m  0 -  to 20-inches 

p e r  minute.  

This  machine i s  equipped with a ram def lec tometer  which 

The machine is  

A universa l  tes t ing machine similar to  the one desc r ibed  but 

with a 120,000-lb max imum capaci ty  was  used  for  s o m e  of the l a r g e  

load foam and honeycomb t e s t s .  

Nylon Phenol ic  Honeycomb T e s t s .  - A typical nylon phenolic honey- 

comb specimen,  4 x 4 x 2 ,  is shown in F i g u r e  18 before  and af te r  c rush ing  

t e s t s .  Three  spec imens  of 3/8- inch ce l l  s i z e ,  and t h r e e  spec imens  of 1 / 4 -  

inch ce l l  s ize ,  and t h r e e  spec imens  of 3/16-inch ce l l  s i ze  w e r e  t e s t ed  by 

c rush ing  in the 2-inch depth d i rec t ion  unt i l  the load buildup at the end of the 

s t roke  became v e r y  s t eep ,  indicating the l imi t  of usable  s t roke .  

spec imen  w a s  weighed and th i s  weight was  u s e d  in conjunction with the a r e a  

under  the load s t roke  cu rve  to  de t e rmine  the specific energy  absorbing 

efficiency. The specific 

energy  shown calculated contains  the usab le  s t roke  which i s ,  t he re fo re ,  a 

r ea l i s t i c  efficiency evaluation. 

culated than that  shown if  the actual  s t roke  was  used  in the ca lcu la t ions .  The 

r e s u l t s  a r e  consis tent  and b e a r  out the p re l imina ry  e s t ima ted  eff ic iencies  

except in the c a s e  of the 3/16-inch ce l l  s i z e  which i s  the only s i ze  which 

qual i f ies  for the 1 0 , 0 0 0  f t - l b / lb  l imitat ion.  

eff ic iency w a s  not based  on usable  s t roke  l imitat ions and the re fo re  would 

Each  

Table  IV shows the t e s t  r e s u l t s  f o r  t hese  spec imens .  

A higher  efficiency could have been ca l -  

In th i s  ce l l  s i zc ,  the e s t ima ted  



. .  

Figure  18. Test  Specimens of ( A )  Nylon Phenolic Honeycomb (B)  Syntactic 
Foam Filled with Glass Micro Balloons (C)  A Combination of 
Specimens ( A )  and (B) ,  Before and After Testing 
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TABLE I V .  TEST RESULTS FROM CRUSHING SPECIM-ENS 
O F  HONEYCOMB, FOAM, AND FOAM-FILLED HONEYCOMB 

Type of 
Specimen 

Vylon Phenolic 
Honeycomb 

\lylon Phenolic 
4oneycomb 
il led with Syn- 
actic Foam and 
vlicro -Balloons 

syntactic Foam 
md Micro-  
3 alloon s 

, e l l  Size 
( in .  ) 

3/ 8 

31 8 

31 8 

114 

114 

114 

31 16 

31 16 

31 16 
~- 

3 /  8 

31 8 

31 8 

31 8 

N / A  

Density 

( lb /  f t3)  

4 . 5  

4 . 5  

4 . 5  

8 . 0  

8 . 0  

8 . 0  

9 . 0  

9 . 0  

9 . 0  

28 .9  

27 .8  

31. 1 

29.0 

31 .6  

3 1 . 4  

32. 0 

34 .2  

34 .8  

34. 8 

27 .4  

27.4 

26. 8 

Usable 
S t roke  
(70) 

50 

50 

80 

75 

80 

75 

80 

80 

80 

55 

60 

60 

60 

70 

70 

65 

68 

65 

75 

70 

70 

70 

c c  
F 

(Ps i )  

225 

200 

138 

688 

6 25 

6 25 

1125 

1094 

1125 

194 1 

1915 

1970 

1760 

1650 

1650 

20 30 

2350 

3050 

2540 

888 

10 15 

888 

E 
SP 

3 .60  

3.20 

3 . 5 3  

9 .  30 

9 . 0 0  

8 .45  

14 .4  

14 .0  

1 4 . 4  

5 . 3 3  

5 . 9 5  

5 . 4 7  

5.  25 

5 .  26 

5 .30  

5 . 9 4  

6 . 7 3  

8 .  20 

7.  88 

3. 26 

3 . 7 4  

3 .34  
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have been a lower value.  

that  plast id  honeycomb m a t e r i a l  has  no initial peak load compress ive  

s t rength ,  t he re fo re  the compress ive  strength is a l so  the c rush ing  s t rength .  

Tes t s  were  a l so  conducted on f o u r  3/8-inch c e l l  s ize  nylon phenolic honey- 

comb spec imens  of 2 x 4 x 2-inch s i ze  filled with syntactic foam of approxi-  

mately 32 lb / f t  densi ty .  

efficiency improvement  over  the unfilled 3/8-inch honeycomb but the actual  

values  were  half the minimum requi red  specific energy.  

The actual  difference can be at t r ibuted to the fac t  

3 
The r e s u l t s  in Table IV show a significant 

Syntactic Foam Tes t s .  - Nine specimens of syntactic foam m a t e r i a l  
3 

in groupings of t h r e e  each  of 30, 32 and 35 lb / f t  

120,000-lb capaci ty  t e s t  machine.  

shown before  and af te r  t e s t  in F i g u r e  18. 

energy  efficiency improved with increas ing  densi ty  and was approaching 

the minimum acceptable  value with a density of 35 lb / f t  . 

density were  tes ted  in  the 

The specimens were  s i m i l a r  to the one 

It was indicated tha t  the specif ic  

3 

Discussion of Honeycomb and Foam Resu l t s .  - A typical  load 
3 

deformat ion  graph  f o r  syntact ic  foam of approximately 35-lb/f t  

shown in F i g u r e  19. 

s t roke  and then h a s  a two-step load dropoff to a f a i r ly  s teady load with in-  

c r e a s i n g  deformation until  the load builds up again rapidly at the end of the 

s t roke .  

specif ic  energy  absorpt ion capabili ty of t h i s  m a t e r i a l  was much below the 

minimum requ i r ed  value and the  shape of the load deformation cu rve  was  not 

c lose  to the ideal .  

syntact ic  foam-f i l led  nylon phenolic honeycomb and for  the unfilled honeycomb. 

The syntact ic  foam-f i l l ed  honeycomb had a load deformation plot with a 

s l ight  peak at the beginning and end of the s t r o k e ,  o therwise  i t  approached 

an ideal  shape;  however the energy  absorption efficiency was not c lose  to the 

minimum value r equ i r ed .  

fo rma t ion  plot a s  shown was an idea l  shape. 

densi ty  is 

This materi 'al  peaks sharp ly  at the beginning of the 

The usable  s t roke  i s  l imited to  70% of the spec imen depth.  The 

F i g u r e  20 p r e s e n t s  typical load deformat ion  g raphs  f o r  

The unfilled nylon phenolic honeycomb load d e -  

The 3/16-inch ce l l  s i ze  shown 
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in  F igu re  20 w a s  the ce l l  s i ze  which had a specif ic  energy  efficiency of 

14,400 f t - lb / lb  and the re fo re  r e p r e s e n t s  a cons iderable  improvem&nt  o v e r  

aluminum alloy honeycomb as an ene rgy  absorpt ion s t r u c t u r a l  e lement .  

c r u s h e d  m a t e r i a l  f r o m  these  e lement  t e s t s  was  col lected and p r e p a r e d  f o r  

rad io  frequency t r a n s p a r e n c y  tes t ing .  

All 

Fragment ing  Tube T e s t s .  - A evaluation of the r e s u l t s  of the p r e -  

l imina ry  tube t e s t s  indicated that  143 f a b r i c ,  which i s  highly d i rec t iona l  in 

s t r eng th ,  could not be used  because  the tubes  spl i t  r a t h e r  than commencing 

to  f ragment .  The 18 1 b i -d i rec t iona l  f ab r i c  furn ished  good f ragment ing  

r e s u l t s  in s o m e  c a s e s ,  espec ia l ly  with the higher  s t rength  epoxy r e s i n  

s y s t e m ;  consequently the t e s t  p r o g r a m  was  l imi ted  to  1. 0 - inch -d iame te r  

tubes with 181 fab r i c  l amina te s  with an epoxy r e s i n  sys t em fab r i ca t ed  by a 

hand layup p r o c e s s .  

All tes t ing was  conducted with s t ee l  d i e s  at a 1. 0 - inch -pe r -minu te  loading 

r a t e .  

10, 000 f t - lb / lb  specif ic  energy  r e s t r i c t ion  with one tube f ragment ing  at  a 

specif ic  energy level of 25, 200 f t - l b / lb .  

four  p l i e s  and had a tube to  die  t / r  of 0 .682.  

ra t io  which was used  in the p r e l i m i n a r y  t e s t s  which a l so  r e su l t ed  in a s i m i l a r  

energy  value. 

tubes of s imi l a r  dimension was s ignif icant .  

tubes indicated that  a different  fabr ica t ion  p r o c e s s  should improve  the r e -  

peatibil i ty of r e s u l t s  among s i m i l a r  spec imens  and s c a t t e r  could be reduced .  

It was a l s o  concluded that the spli t t ing in the 143 tubing m a y  a l so  be a t -  

t r ibuted to the hand layup fabr ica t ion  p r o c e s s .  

s c a t t e r  in the t e s t s  shown in Table  V ,  additional t e s t ing  was  planned us ing  a 

new method of fabr ica t ion  f o r  the tube spec imens .  

were  fabricated on the tape wrapping appl ica tor  which i s  il1ustratt.d and 

desc r ibed  in the spec imen f ab r i ca t ion  sec t ion  of t h i s  r e p o r t .  

the applicator i s  that the f a b r i c a t o r  can apply a 3000-lb p r e s s u r e  to the 

The r e s u l t s  of the t e s t  p r o g r a m  a r e  tabulated in Table V .  

There  w e r e  m o r e  than 50% of the tubes  t e s t ed  which qualified f o r  the 

This  p a r t i c u l a r  tube was m a d e  with 

This  ra t io  was  lower than the 

An examination of these  r e s u l t s  indicated that  s c a t t e r  between 

An investigation of the f r agmen ted  

As a r e su l t  of the indicated 

The new s e r i e s  of t ubes  

Onc f e a t u r e  of 
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F igure  20. Typical Radio Frequency  Transpa ren t /Ny lon  Phenol ic  Honeycomb Load 
Displacement Graphs  for Specimen Types "A" and "C" Shown in F igu re  18 
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mandre l  to  r emove  all entrapped a i r  and to e n s u r e  a posit ive bond between 

laminate  l a y e r s .  

f ab r i ca t ed  with a n  epoxy r e s i n  sys tem and with fabr ic  weaves of 181 fabr ic  

and of 143 f ab r i c  or ien ted  in  the hoop direction for  some tubes and in the 

longitudinal d i rec t ion  f o r  o ther  spec imens .  

contribution to the fragmenting efficiency of tubing is in  the breaking of the 

longitudinal f i nge r s  a f te r  the tube sp l i t s  into multiple f inge r s  was borne out 

by t e s t s  of the  143 fabr ic  spec imens  a s  shown in Table VI.  

again encountered in the longitudinally or iented 143 fabr ic  spec imens  , but 

those spec imens  which did f ragment  provided the highest  specific energy 

va lues  fo r  longitudinally or ien ted  143 fabr ic ,  and the lowest va lues  for  the 

hoop or ien ted  f a b r i c s .  

t hese  t e s t s  with 28,400 f t - lb / lb  specific energy fo r  a four-ply longitudinally 

or ien ta ted  143 f ab r i c  with a t / r  of 0 .  330. 

repeatabi l i ty  in specif ic  energy  fo r  s imi l a r  geometry  and the highest  value 

with th i s  f ab r i c  weave w a s  23,800 f t - lb / lb  f o r  a t / r  of 0 .565.  

The new s e r i e s  of tubes were a l so  1.0- inch d i ame te r  

A theory that the p r i m a r y  

Splitting was 

The highest  value of the p rogram was obtained in 

The 181 fabr ic  tubes showed 

The actual  f ragmented  tube debr i s  which was  obtained f o r  the 

different ly  or ien ta ted  f a b r i c s  and different weaves var ied  with the f a b r i c s  

and the weave or ientat ion a s  shown in F igu re  21. 

plot f o r  a 181 f ab r i c  weave epoxy r e s i n  system tube is shown in F i g u r e  22. 

The re  is no ini t ia l  peaking of the cu rve  at the beginning of the s t roke  and the 

magnitude of the load osci l la t ion during the s t roke  is much s m a l l e r  than was 

obtained in the  fragmenting t e s t s  of aluminum alloy tube.  Seve ra l  additional 

tubes  in  t h i s  e x t r a  s e r i e s  w e r e  tes ted  a t  20 .0  inches p e r  minute a s  compared  

with the p r o g r a m  t e s t  r a t e  of 1. 0 inch per minute.  

f r agmen ted  tube a f t e r  the high loading rate  run .  The actual  shape of the load 

deformat ion  cu rve  was  rec tangular  with no init ial  peaking and with no signifi-  

cant  osc i l la t ion  of the load level  with s t roke as w a s  recorded  in the low-speed 

run .  

than that  obtained f o r  a s imi l a r  specimen run at 1 .0  inches pe r  minute .  

A typical load deformation 

F igu re  23 i l l u s t r a t e s  the 

The spec i f ic  energy  obtained for  the high-speed run was slightly higher 
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RADIO FREQUENCY TRANSPARENCY TESTS 

General  Requi rements .  - The p r i n c i p a l  o b j e c t i v e  of t h i s  

program is  t o  deve lop  a n  e f f i c i e n t  ene rgy  a b s o r p t i o n  s t r u c t u r a l  
e lement  which w i l l  a l s o  be  r a d i o  f r equency  t r a n s p a r e n t  w i t h i n  
s p e c i f i e d  l i m i t s .  The s t r u c t u r a l  e l emen t s  which were tes ted f o r  
r a d i o  f requency  t r a n s p a r e n c y  were open c e l l  e l emen t s  and s o l i d  
materials. The open c e l l  t y p e s  were ny lon  p h e n o l i c  honeycomb 
and epoxy r e s i n  sys tem g l a s s - f i b e r - r e i n f o r c e d  t u b i n g .  The s o l i d  
materials were s y n t a c t i c  foam m a t e r i a l ,  glass macro-balloons and 
epoxy resin matrix, and nylon  p h e n o l i c  honeycomb f i l l e d  w i t h  
s y n t a c t i c  foam. The f a c t o r s  which i n f l u e n c e  t h e  r a d i o  f r equency  
( r f )  power t r a n s m i s s i o n  through a d i e l e c t r i c  body i n c l u d e  t h e  
f requency  of the  r f  ene rgy ,  t h e  angle of i n c i d e n c e  of t he  i n -  
coming wave, and t h e  d imens ions  of t h e  d i e l e c t r i c  material. The 
spec  i f  ied r f  pa rame te r s  were as f o l l o w s  : 

1. Radio f r equency  range: 100 t o  2000 megacycles 
2 .  D i e l e c t r i c  c o n s t a n t  r a n g e :  1 . 0  t o  1 0 . 0  
3. L o s t a n g e n t  range: 0.03 t o  0.05. 

I n  g e n e r a 1 , i t  c a n  be s ta ted  t h a t  f o r  maximum power t r a n s -  
m i s s i o n  the ene rgy  a b s o r p t i o n  materials shou ld  have the  l o w e s t  
p o s s i b l e  d i e l e c t r i c  c o n s t a n t  and loss t a n g e n t .  

Test Set-Up and Procedure .  - The t e s t  program was planned 
t o  e s t a b l i s h  t h e  r a d i o  f r equency  t r a n s p a r e n c y  of c rushed  and 
uncrushed s e l e c t e d  s t r u c t u r a l  e l e m e n t s .  S i n c e  t h e  d i e l e c t r i c  
c o n s t a n t  and loss t a n g e n t  f o r  t he  uncrushed m a t e r i a l s  were 
a v a i l a b l e  from t h e  materials p r o d u c e r s ,  t h e s e  known pa rame te r s  
were u t i l i z e d  i n  a rf a t t e n u a t i o n  e q u a t i o n  to de te rmine  a t t e n u a -  
t i o n  over  t h e  s p e c i f i e d  band of f r e q u e n c i e s  f o r  t h e  uncrushed 
e l e m e n t s .  The t e s t  program was l i m i t e d ,  t h e r e f o r e ,  t o  the d e t e r -  
m i n a t i o n  of t h e  a t t e n u a t i o n  o v e r  t h e  s p e c i f i e d  band of  f r e q u e n c i e s  
f o r  t h e  c r u s h e d  materials. 

The mater ia l ' s  c o a x i a l  t e s t  f i x t u r e  which was used f o r  t e s t i n g  
t h e  f o u r  m a t e r i a l  t y p e s  i s  shown I n  F i g u r e  24 .  T h i s  f i x t u r e ,  
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which i s  a 5O-ohm, s o l i d - a i r  c o a x i a l  t r a n s m i s s i o n  l i n e ,  i s  one 
meter i s  l eng th ,  and has GR f i t t ings a t  each  end. When tes t ing 
a g i v e n  sample,  t h e  c rushed  m a t e r i a l  was i n s e r t e d  as un i fo rmly  
as  possi .ble between two p l e x i g l a s s  d i s c s  as shown. The a c t u a l  
l e n g t h  of t he  m a t e r i a l  sample can  be  accounted  f o r  i n  t h e  rf 

i n s e r t i o n  loss e q u a t i o n ;  however, one meter l eng th  makes t h e  
c a l c u l a t i o n  more e x p e d i t i o u s .  I n  a d d i t i o n ,  f o r  low l o s s  mater- 
i a l s ,  t o o  s h o r t  a l e n g t h  y i e l d s  a b s o l u t e  loss v a l u e s  l e s s  t h a n  
t h e  a c c u r a c y  of t h e  equipment s e t u p .  

The r e l a t i o n s h i p  of t h e  c o a x i a l  f i x t u r e  w i t h  t h e  r e s t  of 
t h e  t e s t  s e t - u p  i s  shown s c h e m a t i c a l l y  i n  F i g u r e  25. The rf 

i n s e r t i o n  loss of one meter l e n g t h  f o r  t h e  t e s t  sample can  be 
de te rmined  from t h e  f o l l o w i n g  r e l a t i o n :  

Ls = Pi - ( P o  + P r )  

where 

Ls = 
sample r f  i n s e r t i o n  loss i n  db 

Pi = 
i n p u t  power l e v e l  i n  dbm 

= o u t p u t  power l e v e l  i n  dbm 

Pr = r e f l e c t e d  power l e v e l  i n  dbm 

The schemat i c  t e s t  s e t u p  i n  F i g u r e  25 i n d i c a t e s  the  t h r e e  p o s i t i o n s  

of t h e  power meter s o  t h a t  Pi , Po , and P, c a n  be ob ta ined  f o r  
computa t ion  of t h e  t e s t  sample r f  loss Ls i n  t h e  above e q u a t i o n .  
The a c t u a l  l a b o r a t o r y  t e s t  s e t u p  f o r  t h i s  schemat i c  sys tem i s  
shown i n  F i g u r e  26. The power meter  i s  shown c e n t e r e d  behind 
the  1-meter, 5 /8- inch  c o a x i a l  l i n e .  The i n p u t  and o u t p u t  c o u p l e r s  
are  shown a t  t h e  edge of t h e  bench a t  each  end of t he  c o a x i a l  
t e s t  f i x t u r e .  The s i g n a l  g e n e r a t o r  is  l o c a t e d  behind  and 
s l i g h t l y  t o  t h e  r i g h t  of t h e  power meter  on t h e  s h e l f  above t h e  

t es t  bench.  

D i s c u s s i o n  of R e s u l t s .  - P r i o r  to t h e  rf t e s t i n g  of t h e  f o u r  
c rushed  spec imens ,  a n  rf a t t e n u a t i o n  measurement was conducted 
on a ny lon  r o d .  T h i s  t e s t  was conducted t o  e s t a b l i s h  t h e  d e g r e e  



5 0  OHM 
COAXIAL LINE PLEXIGLASS DISC 

\ / 
r 

PLEXIGLASS DISC 

\ / I n  

1 METER O F  TEST SAMPLE 

Figure  24. Coaxial  Line T e s t  F ix tu re  with Inse r t ed  Test  Sample 

56 



c a, 
VI 
U 
m 
a, 
.9 

a, 

G 
9 
N 
a, 
k 
5 
M 

i;: 

57 



of c o r r e l a t i o n  between e x p e r i m e n t a l  and p r e d i c t e d  a t t e n u a t i o n  
c h a r a c t e r i s t i c s  of a known s o l i d  material. The r e s u l t s '  a re  p r e -  
s e n t e d  w i t h  a t t e n u a t i o n  as  a f u n c t i o n  of f r equency  over  most  of 
t he  1 0 0  t o  2000 megacycle spec t rum ( F i g u r e  2 7 ) .  The r e s u l t s  i n -  
d i c a t e d  agreement  t o  w i t h i n  l e s s  t h a n  1 db a b o u t  t h e  p r e d i c t e d  
amount of  i n s e r t i o n  a t t e n u a t i o n  which i s  w i t h i n  t h e  accu racy  of 
t h e  t e s t  s e t u p  measurements.  

The a t t e n u a t i o n  a8 a f u n c t i o n  of  f r equency  ove r  most of t h e  
100 t o  2000 f r equency  range i s  p r e s e n t e d  i n  F i g u r e  27 f o r  two 
open c e l l  t ype  m a t e r i a l s ,  c rushed  3 /16- in  c e l l  s i z e  nylon  pheno- 
l i c  honeycomb, and fragmented l .  0- inch -d iame te r  epoxy r e s i n  sys tem 
g l a s s - f i b e r - r e i n f o r c e d  t u b i n g .  A similar a t t e n u a t i o n  v a r i a t i o n  
w i t h  f requency  i s  shown f o r  two c l o s e d  c e l l  or s o l i d  materials 
i n  F igu re  28.  T h i s  l a t t e r  p r e s e n t a t i o n  shows b o t h  c rushed  syn-  
t a c t i c  foam and c rushed  ny lon  p h e n o l i c  honeycomb f i l l e d  w i t h  

s y n t a c t i c  foam. The t e s t  r e s u l t s  are  shown w i t h  connec ted  t e s t  
p o i n t s ,  t h e  o t h e r  p l o t  i s  a p r e d i c t e d  a t t e n u a t i o n  w i t h  a + 1 db 
upper  and lower l i m i t  of  measurement a c c u r a c y  a l s o  p l o t t e d  a b o u t  
t h i s  c a l c u l a t e d  l i n e .  If i t  i s  assumed tha t  t h e  power meter ex-  
h i b i t s  an a c c u r a c y  of + 0.5 db and t h a t  any power d r i f t  of t h e  

s i g n a l  g e n e r a t o r  remains w i t h i n  0.5 db of i t s  o r i g i n a l  se t t ing  
w h i l e  t h e  power measurements are  made as p r e v i o u s l y  d e s c r i b e d ,  
t h e n  a measurement a c c u r a c y  of + 1 db i s  r e a s o n a b l e .  The p r e -  
dieted curves  i n  e a c h  of t h e s e  g r a p h s  were de te rmined  by c a l c u -  
lat ing the  d i e l e c t r i c  c o n s t a n t  and loss t a n g e n t  v a l u e s  from 
Appendix B e q u a t i o n s  ( 7 )  and (ll), r e s p e c t i v e l y ,  of open c e l l  
c rushed  m a t e r i a l ,  honeycomb and t u b i n g ,  and u s i n g  t h e s e  para- 
me te r s  i n  e q u a t i o n  ( 4 )  o r  nomograph F i g u r e  B-1 of Appendix B 
t o  c a l c u l a t e  a t t e n u a t i o n  f o r  a range of f r e q u e n c i e s .  S i m i l a r l y ,  
f o r  t h e  c l o s e d  c e l l  o r  s o l i d  materials ( s y n t a c t i c  foam and 
honeycornb f i l l e d  w i t h  s y n t a c t i c  foam) ,  Appendix B e q u a t i o n s  ( 5 )  
and ( 1 0 )  a r e  u s e d  f o r  d i e l e c t r i c  c o n s t a n t  and loss t a n g e n t ,  r e -  
s p e c t i v e l y ,  in e q u a t i o n  ( 4 )  or F i g u r e  B-1 nomograph. The 
m a t e r i a l s  p roduce r s  ' d i e l e c t r i c  c o n s t a n t s  and loss t a n g e n t s  for 

- 

- 

- 
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t h e  materials and t h e  c a l c u l a t e d  c rushed  e lement  v a l u e s  a re  tab-  

u l a t e d  i n  'Table V I I .  

TABLE V I 1  

MATERIAL CHARACTERISTICS FOR ATTENUATION PREDICTION 

D i e l e c t r i c  Cons tan t  Loss Tangent  
Element Element Crushed Element Crushed 

Material Element Material Element 

Nyl on Pheno l i c  1.07* 1 . 2 1  .0010*- .0028 
Hone ye omb 

181 F a b r i c  
Epoxy Res in  
Laminate  Tube 

4.15* 1.33 .0240* .0048 

S y n t a c t i c  Foam 1 . 6 2  1 . 5 1  .0123 .0105 
Epoxy resin 1.80* .0150* 
Glass macro-balloons 1.25* ,0100" 

Nylon Pheno l i c  1.58 1 . 5 4  .011g .on3 
Honeycomb &: Foam 

*Materials pruducer. d a t a :  A l l  a t h e r  v a l u e s  
t a b u l a t e d  a r e  c a l c u l a t e d .  

Agreement between measured and p r e d i c t e d  v a l u e s  as p r e s e n t e d  
on the graphs for open c e l l  m a t e r i a l s  such  a s  the  n y l o n  p h e n o l i c  
honeycomb and  t h e  f i b e r g l a s s  t u b e s  i s  c l o s e .  These materials and 
e l e m e n t s  were a l s o  t he  most mechan ica l ly  e f f i c i e n t  a s  ene rgy  a b -  
s o r b e r s .  The compar isons  between c a l c u l a t e d  and measured v a l u e s  
f o r  the solid materials s u c h  as t h e  s y n t a c t i c  foam and the  foam- 
f i l l e d  honeycomb showed t n a t  t h e  measured l e v e l  of rf i n s e r t i o n  
loss was a p p r o x i m a t e l y  3/4 to 1 6s above t h e  measurement e r r o r  
t o l e r a n c e  l i m i t  l e v e l  ove r  most of t h e  f r e q u e n c y  range. T h i s  
d i f ' f e r e n r e  may b e  d~1e tc;  t t l e  fact ,  t1.at t h e  m a t e r i a l s  p r c d u c e r s  
quoted  c o n s t a n t  v a l u e s  for 6' and t a n  6 for s y n t a c t i c  foam listed 
i l l  Tab le  V I 1  f o r  t h e  e n t i r e  range of  f r e q u e n c i e s  when i t  has been 

observed  tha t  these p r o p e r t i e s  may v a r y  w i t h  f r equency .  
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C ON CLU S I O N S  

The r e s u l t s  of a l l  t he  t u b e  f r agmen t ing  tes ts  f o r  b o t h  t h e  

hand- and tape-wrapped t u b e s  are p r e s e n t e d  w i t h  t he  pa rame te r  
t/r as a va r i ab le  i n  F i g u r e  29. The epoxy r e s i n  sys tems are  
d i s t i n g u i s h e d  by the  s o l i d  d o t s  i n  t h e  g r a p h s .  It was d e t e r -  
mined t h a t  even  when the parameter t/r was p l o t t e d  cubed as 
was done i n  t h e  p r e v i o u s  i n v e s t i g a t i o n s  f o r  aluminum t u b i n g  t h e r e  
was c o n s i d e r a b l e  s c a t t e r  i n  t h e  r e s u l t s  and t h e  v a r i a t i o n  w i t h  

( t / ~ ) ~  o f  t h e  f r agmen t ing  stress coKld n o t  be  de t e rmined  from 
these  r e s u l t s .  When t h e  t e s t  r e s u l t s  were r e p l o t t e d  u s i n g  t h e  
p l y  t h i c k n e s s  as a parameter ( F i g u r e  30), t he  r e s u l t s  were 
shown t o  be  separated i n t o  two d i s t i n c t  g r o u p s ,  a s c a t t e r  band 
f o r  hand-wrapped specimens and a narrow band which i n c r e a s e d  i n  
stress l e v e l  w i t h  number of p l i e s  f o r  tape-wrapped spec imens .  
The tests of hand-wrapped specimens were f o r  v a r i o u s  t /r ;  the re -  
f o r e ,  more s c a t t e r  c o u l d  be expec ted  from these d i f f e r e n c e s  
w h i l e  t h e  tape-wrapped t u b e s  were tes ted on d i e s  which were con- 
s i d e r e d  to g i v e  t h e  n e a r  optimum r a t i o  t/r range of a p p r o x i m a t e l y  
0.350 t o  0.400. The s t r e n g t h  of g l a s s - f i b e r - r e i n f o r c e d  l a m i n a t e s  
has been  d e f i n i t e l y  e s t a b l i s h e d  t o  v a r y  i n  the  manner shown f o r  
the tape-wrapped t u b e s  i n  F i g u r e  30 f o r  t h i c k n e s s e s  of 1/4 i n c h  
(25 p l i e s )  and l e s s ,  and e q u a t i o n s  a re  p rov ided  i n  MIL-HDBK-17 
f o r  e x p r e s s i n g  t h i s  v a r i a t i o n  i n  material s t r eng th  and s t i f f n e s s .  
It c a n  be sugges t ed  t h a t  l a rger  t u b i n g  w i t h  w a l l  t h i c k n e s s e s  
which a r e  n o t  s e n s i t i v e  to t h i s  s t r e n g t h  v a r i a t i o n  may prove  t o  
be even  more e f f i c i e n t  t h a n  the  b e s t  t u b e s  t e s t e d  i n  t h i s  program. 

A p a r a m e t r i c  d e s i g n  g r a p h  i s  p r e s e n t e d  i n  F i g u r e  31 f o r  u s e  
i n  de t e rmin ing  t h e  u s a b l e  s t r o k e  of a n  ene rgy  a b s o r p t i o n  sys t em 
when t h e  l i m i t i n g  impact  l o a d  f a c t o r  and impact  v e l o c i t y  i s  
s p e c i f i e d .  T h i s  g r a p h  shows tha t  f o r  t h e  s p e c i f i e d  range of 
10 to 1000 g ' s  f o r  t h i s  program, a 1 2 - i n c h  u s a b l e  s t r o k e  sa t i s -  
f i e s  a n  impact v e l o c i t y  range of 25 to 300 f e e t  p e r  s econd .  
These long s t r o k e s ,  and longer, c a n  be 
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more e a s i l y  handled  by f r agmen t ing  t u b e s  t h a n  i n  c r u s h i n g  honey- 
comb, b u t  t h i s  program has demonst ra ted  t h a t  b o t h  s t r u c t u r a l  e l e -  
ments a r e  e f f i c i e n t  r a d i o - f r e q u e n c y - t r a n s p a r e n t ,  e n e r g y - a b s o r p t i o n  
sys tems.  

The r e s u l t s  of t h e  haneycomb c r u s h i n g  t e s t s  and the  t u b e  
f ragment ing  t e s t s  a re  p r e s e n t e d  as d e s i g n  t y p e  g r a p h s  i n  F i g u r e s  
32 and 33, r e s p e c t i v e l y .  The p rocedure  f o r  u s i n g  t h e  honeycomb 
mater ia l  i n  d e s i g n  would be  to f i r s t  u s e  F i g u r e  31 to e s t a b l i s h  
u s a b l e  stroke l e n g t h .  From F i g u r e  3 2 ,  a f t e r  t h e  payload weight 
( W )  has been  m u l t i p l i e d  by t h e  l i m i t i n g  impact  l o a d  f a c t o r  (nx) 
and d iv ided  by t h e  c r o s s  s e c t i o n a l  area to be  covered  by t h e  

honeycomb ( A ) ,  t h e  c r u s h i n g  s t r eng th  ( F c c )  de te rmined  from these  
pa rame te r s  i s  used  t o  e n t e r  t h e  g r a p h  and read t h e  r e q u i r e d  den-  
s i t y  from t h e  c u r v e  for ny lon  p h e n o l i c  honeycomb. Adjus tments  
c a n  b e  made on t h e  honeycomb area ( A )  and d e n s i t y  u n t i l  t h e  p o i n t  
on the  c u r v e  c o i n c i d e s  w i t h  a v a i l a b l e  c e l l  s i z e  material .  A 
s imilar d e s i g n  p rocedure  c a n  be u s e d  w i t h  t h e  t u b e  f r agmen t ing  
bar c h a r t  shown i n  F i g u r e  33. The paylcad  we igh t  i s  m u l t i p l i e d  
by the  impact l o a d  f a c t o r  and t h e n  i n  t h i s  c a s e  i s  d i v i d e d  by a n  
e s t i m a t e d  number of t u b e s  to be  u s e d  f o r  the  f r agmen t ing  p r o c e s s .  
When the c h a r t  i s  e n t e r e d  w i t h  t h i s  pa rame te r ,  the  number of p l i e s  
for 181 f a b r i c  epoxy r e s i n  sys t em t u b i n g  of 1 . 0 - i n c h  i n s i d e  d i a -  

meter a re  de termined  as  i s  a l s o  t h e  weight p e r  i n c h  of t u b e  
l e n g t h .  I f  a d d i t i o n a l  t u b e  s i z e s  are  t e s t e d  these c a n  be  a d d e d  

t o  t h i s  c h a r t  t o  make i t  more comple t e .  A r a p i d  c a l c u l a t i o n  of 
ene rgy  a b s o r p t i o n  sys t em we igh t  c a n  b e  made f o r  these  two energy  
abso rp t io r l  s t r u c t u r a l  e l emen t  t y p e s  by the  u s e  of F i g u r e s  32 and 

33. 

The results o f  t h i s  e x p e r i m e n t a l  i n v e s t i g a t i o n  have e s t a b -  
1 ished  that bot11 t h e  tape-wrappcd g l a s s - f i b e r - r e i n f o r c e d  p l a s t i c  
t u b i n g  when f'ragnicnted o v e r  a d i e  and t h e  ny lon  p h e n o l i c  honey- 
comb wklen c rushed  r c p r c s e n t  e f r i c i e l l t  methods of enc rgy  a b s o r p t i o n  
f'or s t r u c t u r a l  v l c r n c J 1 i L s  which are a l so  r a d i o  f'rcqiiency t r a n s -  
p a r c a n t .  
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The  r e s u l t s  of th i s  p r o g r a m  have established that the tape-wrapped 

g lass - f iber  Areinforced plast ic  tube when f ragmented  over  a d i e  is compet i -  

t ive with the  most efficient a luminum tube energy absorpt ion p r o c e s s .  

was  also establ ished that  both the G R P  tube p r o c e s s  and the c rush ing  of 

nylon phenolic honeycomb rep resen t  efficient methods of energy  absorp t ion  

a t  r a t e s  of 1 . O  inch p e r  minute ,  and that these s t r u c t u r a l  e lements  a r e  

radio-frequency t r anspa ren t  before  and af ter  energy  absorpt ion.  

It 

The  application of new mechanica l  deformation types of energy  

absorpt ion p r o c e s s e s  r e q u i r e s  considerat ion of the ac tua l  mi s s ion  envi ron-  

ment  of spacec ra f t  landing s y s t e m s ,  such a s  ac tua l  landing impact  velocit ies,  

impact ing with horizontal  components of velocity,  and exposure  of landing 

s y s t e m s  to  t e m p e r a t u r e  before  landing. In addition, t h e r e  a r e  newer  

p las t ic  m a t e r i a l s ,  new g la s s  re inforcements  , and o ther  s t r u c t u r a l  

geomet r i e s  to cons ider  before  efficient rad io- f requency- t ransparent  energy  

s y s t e m s  can  be developed for  a vehicle sys t em.  In o r d e r  to r e a l i z e  the 

potential  of t hese  new p r o c e s s e s ,  a supplementary r e s e a r c h  p r o g r a m  i s  

recommended which embodies  the following t a sks :  

1 .  

2. 

Additional e lement  t e s t s  of newly developed h igh - t empera tu re  
r e s i n  s y s t e m s  and of new non-woven and woven g l a s s  f ab r i c s  
as  tubing of varying d i a m e t e r s  and as honeycomb e l emen t s .  
T h e s e  additional e lement  t e s t s  would include impac t  loading 
r a t e s  cor responding  to the actual  landing s y s t e m  environment .  
High t e m p e r a t u r e s  would a l s o  be s imula ted  cor responding  to  
eventual  s y s t e m s  appl icat ions,  

Using the developme,its f r o m  the p r o g r a m  repor ted  he re in  and 
the one s ta ted  in I tem 1 ,  application of the tube f ragment ing  and 
honeycomb crushing p rocesses  to  ac tua l  landing s y s t e m  des ign  
for r ep resen ta t ive  spacecraf t .  

The  s y s t e m s  would be designed to use the e lements  m o s t  effectively 

f o r  oblique angle  of impact  and t e s t s  would be conducted s o  a s  to demon-  

s t r a t e  the adequacy of the sys t em concept using these  e l emen t s .  
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APPENDIX A 

Mater ia l  Range of Application. - The range of application of any 

impact  a b s o r b e r  i s  a function of ce r t a in  measurable  p a r a m e t e r s  assoc ia ted  

with the impact  absorpt ion ma te r i a l  and the impact  absorption p r o c e s s .  

F i g u r e  A- 1 shows typical load-deformation cu rves  fo r  var ious  energy  ab-  

s o r b e r s .  F o r  an ideal  energy abso rbe r  the energy no rma l  to the su r face  

- 
Since the f o r c e  P i s  constant  f o r  an ideal  energy a b s o r b e r ,  and the velocity 

V i s  a s sumed  to be reduced to z e r o  in s t roke  L, 
n 

2 
V = 2aL 

n 

o r  V 2 
n 

2L 
- -  - a 

If we a s s u m e  that the energy abso rbe r  is one in which the m a t e r i a l  i s  

c rushed  (such  as p las t ic  foam o r  honeycomb m a t e r i a l ) ,  then 

- - 
P =  F A; 

cc  
- -  

o r  A = P/F , 

where  F 

cc 
- 

i s  the crushing s t r e s s  and A is  the contact a r e a .  
cc  

( 3 )  

(4) 

F o r  r e a l  impact  absorpt ion m a t e r i a l s ,  the actual load-deformation 

cu rve  may be approximated a s  shown below. 
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For2e 

I n i t i a l  
Bot toming 

C r u s h i n g  Force (F) 

- - Approximat i o n  

0 .z 
AVAILABLE STROKE -L' 

Since f o r  many crushable  impact  absorption m a t e r i a l s  the usable  s t roke  L 

i s  approximately 75 percent  of the avdildble s t roke  L 

is  se t  a t  4 / 3  L .  

I 

the avai lable  s t roke  

Then the volume V of the impact absorpt ion m a t e r i a l  i s  

V = A (4 /3L)  (7) 

If p is the densi ty  of the impact  absorpt ion m a t e r i a l ]  then the e a r t h  weight 

of th i s  m a t e r i a l ,  w ,  i s  

w = VP - - [A(4/3L),  1 
Combining E g s  2 ,  6 and 8 ,  

1 
- m V  2 

= & 
- -  

w = (P/F I ( 4 / 3 L ) p  
cc  

cc  
w =  - -  v F  / p  I c c  

o r  
3 3 2 . 2  n 

2 

(9 )  

where  W = total  e a r t h  weight of impacting vehicle ,  l b s .  
- 

The quantity (F 

of the m a t e r i a l ]  m e a s u r e d  in f t - l b / l b l  - so that 

/p ) is the ideal specif ic  energy absorpt ion capacity E 
cc SP 

Equation 9 m a y  be wr i t ten  a s  a weight f ract ion w / W ,  which r e p r e s e n t s  the 

f r ac t ion  of the total  weight of the impacting vehicle requi red  for  impact  ab-  

sorpt ion m a t e r i a l ,  so  that 
2 

V 2 
W 2 1 n n V 



Equation 11 i s  shown plotted vc'rsus impact  velocity V 

honeycomb and plastic foam mattArials in F igu re  A - 2 .  

weight f r ac t ions  fo r  iiluniinurm frdngible tube and nylon dir  Lags.  

ttie f rangible  tube p r o c e s s  can uti l ize 100 percent  of the available s t roke ,  

the weight frac.tion r e l d i o n  for  t h i s  m a t e r i a l  is given by 

for  s eve ra l  d i f f e ren t  

Also plotted a r e  the 
n 

Since 

I1 
v V 

W L (  3 2 .  2 )  E E 
I1 

- 0 . 0 1 5 5  ___ 

SP SP f r nng i blc' tube 

The cu rvcs  presented  in F i g u r e  A - 2  a r e  ideal ized,  in tha t  the weight f rac t ions  

include only the impact  absorpt ion ma te r id l  and do not include the weight 

f ract ion of additional components::: that may be requi red  for  p rope r  operat ion 

of a real  impdct absorption s y s t e m .  

It i s  itnportdnt to note t h a t  F igu re  A - 2  p r e s e n t s  a weight f rdc t ion ,  

based  or1 unidirectional impact  of the ldnder  vehicle.  F u r t h e r m o r e ,  it i s  

assumed that all  the impdct absorpt ion m a t e r i a l  c a r r i e d  by the lander  

vehicle is fully utilized in the landing 

vehicle capable of landing in a n y  a t t i tude,  it i s  obvious t h a t  redundancy of 

impact  absorption ma te r i a l  i s  n e c e s s a r y .  Lf i t  is  a s sumed  that the lander  

vehicle is  spher icd l ,  with the impact -absorp t ion  sys t em completely s u r -  

rounding the vehicle (as  shown in F igu re  A - 3 ) ,  the impact  absorpt ion 

redundancy fac tor  is calculated to be 

impact .  F o r  the c a s e  of a lander  

W 2 
W '  

- 
1 - cos  p Redundancy F a c t o r  = - - 

where:  w = total  weight of impact -absorp t ion  m a t e r i a l ,  lbs 

w ' =  weight of effective impact -absorp t ion  m a t e r i a l ,  l b s  

4 = spher ica l  angle of impact  absorpt ion m a t e r i a l  e f fec t iveness ,  
d e g r e e s  

>:< 
By "additional components" i s  meant  the  d i e s  f o r  operat ion of f rangib le  
tube deviccs ,  load di:,t ribution p la tes  f o r  honeycomb o r  foamed plast ic  
ma te r i a l ,  d i r  b lowers  o r  c o m p r e s s e d  a i r  bot t les  fo r  a i r  bags ,  e t c .  
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W = 41p(r2 3 - r13) 

4 / 3 + p  (r2 3 - r13) 
W - = Redundancy F a c t o r  = 
w t  

Redundancy F a c t o r  = 

Figure  A-3. Required Redundancy of Impact  Absorption Mater ia l  f o r  a 
Spher ica l  Omnidirect ional  Lande r  Vehicle 

76 
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Impact Absorp t ion  
Material ( w  t ) 

4/3+, (r2 3 - r13) 
W - = Redundancy F a c t o r  = 
w t  

Redundancy F a c t o r  = 

Figure  A-3. Required Redundancy of Impact  Absorption Mater ia l  f o r  a 
Spher ica l  Omnidirect ional  Lande r  Vehicle 
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F i g u r e  A - 4 .  Idealized Weight F rac t ion  V e r s u s  Impact Velocity for  Var ious  
Impact  Absorption Mate r i a l s  a n d  Devices - Oi-nnidirectional Impact f o r  a 

Spherical  L a n d e r  Vehicle - -  K e d t i n d a n c y  F a c t o r  = 15 
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If 4 is set equal to 60 d e g r e e s ,  a value fel t  to be compatible with honeycomb 

and frangible -tube type impact  a b s o r b e r s ,  the redundancy fac tor  is 

= 15 
2 

R F  = 1 - C O S  3 0 "  

Figure  4 p r e s e n t s  the weight f rac t ions  of impact -absorp t ion  mater id1 f o r  a 

spher ica l ,  omnidirect ional  lander  vehicle .  The var ious  c u r v e s  a r e  those 

presented  in F i g u r e  A - 2 ,  i nc reased  by the s ta ted  redundancy f ac to r .  

F igu re  A 4  a value of 0 .  10 (10%) w a s  se lec ted  a s  an upper  l imi t  f o r  any r e a l  

sys t em application. 

ca l  upper l imi t  f o r  the impact  velocity f o r  each type of impact  a b s o r b e r .  

In 

With such a l i m i t ,  it is possible  to  es tab l i sh  a p r a c t i -  
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APPENDIX B 

Rf Loss Determinat ion of Dielectr ic  Mdter ia ls .  - There  a r e  two 

p r i m a r y  e l ec t r i ca l  p a r a m e t e r s  which define the absolute d ie lec t r ic  constant 

of a non-magnetic i so t ropic  m a t e r i a l .  

constant ,  F' , and the relat ive l o s s  f ac to r ,  f ' I ,  which a r e  re la ted to the 

relat ive absolute complex  d ie lec t r ic  constant,  f , a s  follows: 

These a r e  the r e a l  re la t ive d ie lec t r ic  

4. e,- 

* 
(1) C = ( 1  - j C" 

The t e r m  

s t o r e  energy and C I '  i s  assoc ia ted  with the dissipation which o c c u r s  in the 

m a t e r i a l .  F r o m  knowledge of these  two p a r a m e t e r s ,  another useful p a r a -  

m e t e r ,  the l o s s  tangent ( tan 8 ) ,  i s  uti l ized to define the quality f a c t o r ,  Q, 

of the m a t e r i a l  where 

f ' is assoc ia ted  with the ability of the d ie lec t r ic  m a t e r i a l  to 

1 
Q = -  

tan 8 
and 

C 
t a n 8  = 7 ( 3 )  

The techniques and methods to be employed fo r  determining these  

p r i m a r y  e l ec t r i ca l  p a r a m e t e r s  of c rushable  rf m a t e r i a l s  fo r  the develop- 

ment  of a rad io  frequency t r anspa ren t ,  energy absorbing,  s t ruc tura l  

e lement  involves a s tandard  t e s t  method which employs the use  of a nomo- 

g r a m .  

A .  Von Hipple has  der ived  a universal  normal ized  equation which 

r e l a t e s  the d ie lec t r ic  constant  and l o s s  tangent of a m a t e r i a l  a t  any given 

opera t ing  wavelength, A_, in m e t e r s  a s  follows: 
V 

rf 

l o s s  
m e t e r  inser t ion  = 8.686 

- 8.686 n tan S - 
0 

x (4) 
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This  equation h a s  been nornographed and is  reproduced  a s  shown i n  F igure  

B-1 for low-loss  d ie lec t r ics .  

c ' /  C i s  defined as  the re la t ive  d ie lec t r ic  constant and p / ~  
0 0 

permeabi l i ty  (one for  nonmagnetic m a t e r i a l s ) .  

It should be noted in th i s  n o m o g r a b  that 

is the re ia t ive  

However, in o r d e r  to expedite m e a s u r e m e n t s  on c rushable  r f -  

t ransparent  m a t e r i a l s  mos t  economical ly ,  it  w a s  decided that the rf 

inser t ion lo s s  m e a s u r e m e n t s  be made  only on c rushed  samples .  

re la t ive d ie lec t r ic  constant and l o s s  tangent of the s tandard  m a t e r i a l s  

uti l ized a r e  known p a r a m e t e r s ,  the rf inser t ion  l o s s  ove r  a band of f r e -  

quencies can be computed o r  predicted f rom the nomograph in F i g u r e  B - 1  . 
Consequently, if the inser t ion  l o s s  cha rac t e r i s t i c  of each m a t e r i a l  in a 

crushed  s ta te  i s  de te rmined  by m e a s u r e m e n t ,  a compar ison  ana lys i s  can  

then be made of the e f f ec t s  on a pa r t i cu la r  m a t e r i a l  in i t s  c rushed  s ta te  

with i t s  s ta t ic  o r  uncrushed s t a t e .  

Since the 

The predicted l o s s  of any given m a t e r i a l  i s  readi ly  de te rmined  f r o m  

the nomogram a s  follows. 

value of the d ie lec t r ic  constant  and the l o s s  tangent (two points on the r igh t  

hand ver t ical  l ine) .  At some  pa r t i cu la r  operat ing f requency  o r  wavelength,  

the rf inser t ion lo s s  through 1 - m e t e r  th ickness  of the m a t e r i a l  can  then be 

determined by noting the p rope r  in te rsec t ing  points on each of the t h r e e  

ve r t i ca l  l ines  of the nomogram ( s e e  i n s e r t  key in F i g u r e  B - 1 . )  

of predicted l o s s  i s  then c o r r e l a t e d  with the m e a s u r e d  value to note any 

degrading effects in the e l ec t r i ca l  p rope r t i e s  of the m a t e r i a l .  

The choice of d ie lec t r ic  m a t e r i a l  spec i f ies  the 

This  value 

Dielectric Constant and Loss Tangent of Compound Die lec t r ic  
Mater ia ls .  - The re la t ive  compound d ie lec t r ic  constant C 

mix tu re  of two m a t e r i a l s  i s  given empi r i ca l ly  by the following r e l a t ions  

of a 
m 

1 = a t b  ( 6 )  
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The t e r m s  a and b a r e  the volume f r ac t ions  of the two component 

ma te r i a l s  and L and a r e  the respec t ive  d ie lec t r ic  constant;. 
1 2 

When the energy-dbsorbing s t ruc tu ra l  m a t e r i a l  exhibits a r a the r  

low dielectr ic  constant uue to the incorporat ion of a i r  into the ce l l  s t r u c t u r e ,  

a change in the compound d ie lec t r ic  constant may be re la ted  a s  follows: 

where 

C = original  d ie lec t r ic  constant of the compound open ce l l  
0 

m a t e r i a l  of density p 

compound d ie lec t r ic  constant of the c rushed  open ce l l  ma te r i a l  
of density 

0 

c = 
m 

prn 

F r o m  equation (2 ) ,  the l o s s  tangent i s  re la ted to an effective Q 

fac tor  of the m a t e r i a l .  

equated through the respec t ive  Q f a c t o r s  a s  follows: 

Thus ,  the compound d ie lec t r ic  l o s s  tangent may be 

1 + -  1 - - 1 
a - -  

m Q l  Q2 

F r o m  equation (2 ) ,  equation (8) becomes  

( 9 )  2 
tan S = tan 6 t tan 6 

m 1 

Taking into account the volume f rac t ion  of each  m a t e r i a l ,  the l o s s  

tangent of a compound d ie lec t r ic  may  be approximately equated as follows: 

tan 6 = a t a n  6 t b tan 8 
m 1 2 

As before ,  fo r  low d ie lec t r ic  air fi l led ce l l  s t r u c t u r e s ,  the equivalent com-  

pound loss  tangent becomes  approximately 

tan 6 m = (k) tan 6 0 
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where  

tan * 8  = or ig ina l  l o s s  tangent of the compound open ce l l  m a t e r i a l  
of densi ty  p 

l o s s  tangent of the crushed open ce l l  ma te r i a l  of 
densi ty  P 

0 

0 

<an 6 = 
m 

m 

Equations ( 7 )  and (11) normal ly  hold for  values of l e s s  than 1. 15 and 
0 

tan 8 l e s s  than 0 .005 .  
0 



APPENDIX C 

The honeycomb and the f ragmented  tube s t ruc tu ra l  e lements  were  

de te rmined  by the t e s t s  conducted in this  program to be the mos t  efficient 

radio frequency t r anspa ren t  s t ruc tu ra l  e lements  of those evaluated. An 

additional considerat ion as pa r t  of this  program i s  to de t e rmine ,  within the 

l imi t s  of engineer ing dccuracy ,  whether the efficiency can be predicted by 

analytical  formulat ions which would contain the significant m a t e r i a l  and 

geometr ic  p a r a m e t e r s  . 

I 

Honeycomb S t ruc tu ra l  Element .  - A method which de te rmines  the 

p a r a m e t e r s  controll ing the crushing s t r e s s  of a hexagonal ce l l  honeycomb 

element  was p re sen ted  by McFar land .  

exper imenta l  r e s u l t s  f o r  aluminum honeycomb. 

of the hexagonal c e l l s  was a s sumed  based  on exper imenta l  obse rva t ions ,  

and f rom th i s  the col lapse mechan i sms  were de te rmined .  The l imi t  ana lys i s  

techniques were  then applied to  the col lapse mechan i sms ,  dnd the energy 

of deformation computed. The deformation energy was cons idered  to be 

contributed to by both bending and s h e a r ,  hence the resul t ing express ion  

contains a m a t e r i a l  compress ion  s t rength ,  F 

s t r eng th ,  F , a s  follows: 

The method h a s  been ver i f ied by 

A simple mode of col lapse 

, and a l so  a m a t e r i a l  s h e a r  
C Y  

su 
2 - 

= F (t / s )  (4 .  750/K t 28 .628)  t 1. 155 F ( t  / s )  
C Y  c su  c F C C  

The above average  c rushing  s t r e s s  equation contains a K t e r m ,  an average 

value of which i s  cons idered  to be 0 . 4 0 ,  and which r e p r e s e n t s  the ra t io  

of one-fourth of a buckling wavelength to the width of a ce l l  wal l .  

st i tution a d  r ea r r ang ing  equation (1)  the new express ion  is: 

By sub-  

- I Tc = ( t  /SI F b o ,  5 0 3 ( t  / s )  + 1.155 F / F  
c C Y  C su c y  

The t e r m  t / s  i s  the ra t io  of the c o r e  foil  thickness  to cel l  s i ze  which may 

be e x p r e s s e d  in t e r m s  of the rat io  of c o r e  density to ma te r i a l  dcnsity ( P  / P )  
c 

c 
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f o r  hexagonal ce l l s  as: 

substituting equation (3)  f o r  the t / s  t e r m s  in equation (2)  then: I 
C 

F 
3 %' 1 . 1 5 5 F  / F  ( 4 )  

F 
- - - 23' 40.503 x - C C  

a Q 8 P su c y  - 
p C  

o r  

F F F 
cy Q [K1 + t K 2  -4 F 

C Y  
where  K = 4 - 6 9  

1 
= 0 .433  

K2  

The specific energy  for a honeycomb element  can be  de te rmined  by 

consider ing a cubic e lement  1 foot on a s ide .  

the crushing s t r e s s  (F 

the s t roke i s  equal to the length of 1 foot and the specific energy is the load 

t i m e s  the s t roke  divided by the weight of the cubic e lement  which i s  the 

honeycomb densi ty  ( P ) in pounds p e r  cubic foot. 

absorption capabili ty fo r  honeycomb, is: 

The average  c rushing  load is 

) in ps i  t i m e s  the loaded a r e a  in squa re  inches (144);  
cc  

Then the specific energy  
C 

c c  
144 F 

E =  
SP Q C  

This  equation is the s a m e  as equation ( 5 )  with the addition of 144 as a constant .  

Then for  honeycomb: 

1 

where  K = 675 
1 

1 

K = 6 2 . 4  

Consider  MIL-HDBK- 17 phenolic m a t e r i a l  p rope r ty  values  to be  

rcpr rsen ta t ive  of nylon phenolic hont-ycomb Inciterial p rope r t i e s  f o r  a ('ore 
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3 
densi ty  of 9 l b / f t  

m a t e r i a l  com’pressive s t rength of 3 0 , 0 0 0  ps i  (F 

ul t imate  s t rength  (F 

s t rength  ra t io  (F / F  ) of 0. 316. Then the substitution of t hese  va lues  

in equation (7)  r e su l t s  in the following: 

( p . ) ;  m a t e r i a l  densi ty  of 110 p e r  cubic foot ( P ) ;  
c 

) ( this  i s  actually an 
C Y  

) fo r  f iberg lass ) ;  ma te r i a l  s h e a r  to c o m p r e s s i v e  
cu 

su cu 

30 ’000  [675(9.0/110) t 62.4(0.  316) 
110 3 E =  

SP 

E = 20,400 f t - lb / lb  
SP 

F o r  7570 effective s t roke:  

E = 20,400 x 0 .  75 = 15, 300 f t - lb/ lb .  
SP 

I The actual  t e s t  values  f o r  nylon phenolic honeycomb in 9 . 0 - l b  

densi ty  w e r e  14 ,400  f t - lb / lb  for 3/ 16-in cell s i ze  as repor ted  in Table  IV .  

It is believed that t h e r e  would be higher  values  which would approach  the 

15,000 f igure  f o r  spec imens  with the s a m e  s t roke  but of a much l a r g e r  

loaded a r e a ,  s ince  edge conditions on the spec imens  t e s t ed  would reduce  the 

efficiency f r o m  the theore t ica l  value.  

r ep resen ta t ive  of the p a r a m e t e r s  of f iberg lass  honeycomb geomet ry  and 

m a t e r i a l  p r o p e r t i e s  which define i t s  specific energy  absorpt ion capabi l i ty .  

It is  concluded that  equation (7 )  is 

F r a g m e n t e d  Tube St ruc tura l  Element .  - T h e  sequence of events  in 

the f ragment ing  of a tube over  a die m a y  be desc r ibed  f i r s t  as  a hoop 

expansion of the tube end over  the die  groave, which r e p r e s e n t s  a l i p  

burs t ing  s t r e s s  plus  a rol l ing action, which in t u r n  r e p r e s e n t s  a running 

moment  a round the c i r cumfe rence  of the tube end tending to tu rn  the tube 

ins ide  out. This  action w a s  demons t r a t ed  on the vinyl tubing in F i g u r e  8 

where  these  tubes  arere tu rned  inside out. A s  the tube i s  s t r e t ched  ove r  

the die  groove,  tube f r ic t ion  on the d ie  contr ibutes  to  the energy  absorpt ion 

p r o c e s s .  

s t r e s s  legel ,  i t  sp l i t s  into a s e r i e s  of longitudinal f ingers .  

a r e  pushed a round  the die groove causing an additional. f r ic t ion ,  and the 

When the tube i s  s t r e t ched  fa r ther  to  the hoop s t rength  fa i lure  

T h e s e  f ingers  



bending act ion on these  f inge r s  c a u s e s  f ragment ing .  

what contributes m o s t  to the ene rgy  absorp t ion  efficiency; i .  e .  

before burst ing of the tube,  f r i c t ion  after the f inge r s  a r e  fo rmed  and bent,  

o r  f ragmenting of the f i n g e r s ,  m a y  be  answered  by studying t e s t  r e s u l t s .  

Some indication of the significant p a r a m e t e r s  can  be de t e rmined  by 

examination of s e v e r a l  tubing types retabulated f r o m  Table  V I .  T h e s e  

tubes were  a l l  t es ted  on a d i e  with the  same rad ius  ( r  = 0 .100) .  

T h e  quest ion as to  

f r ic t ion 

, 

Tube Hoop P r o p e r t i e s  Specific 
F r a g m e n -  Ene rgy  

E P l i e s  ting Modulus Strength S t r a in  
E/106 F t u  H SP e I l i r ec -  S t r e s s  

Weave tion ks i  p s i  k s i  i n . / i n .  70 r f t - l b / lb  

181 6 L  19 .15  3.14 42.4 .0125 6 . 2 5  23,800 

143  4 L  25.00 2 .08  1 0 . 2  .0490 24.50 28,400 

143  4H 11.05 5.12 8 5 . 0  .0166 8.30 1 2 , 3 0 0  

Th i s  tabulation indicates  that  the m o s t  efficient tube w a s  the longitudinally 

or iented 143  fabr ic  weave,  and that its efficiency i s  more  than twice the  

efficiency of the hoop d i rec t ion  143  weave.  T h e  %r  column i s  a n  indication 

of the d is tance  the  tube l ip  h a s  pene t ra ted  by s t re tch ing  into the d i e  groove 

of radius r .  

d i rec t iona l  143  tube shows that the pene t ra t ions  a r e  s i m i l a r  yet the hoop 

djrect ion 143 m a t e r i a l  p rope r t i e s  a r e  s o  much s t ronge r  than the 181 hoop 

p rope r t i e s  that  i f  f r ic t ion before  f ragment ing  w e r e  the m a j o r  contr ibut ion,  

the  143 tube should have been the more  efficient.  If the  a s sumpt ion  is  made  

that the longitlidinal bending s t r eng th  and s t i f fnes s  of the  f inge r s  i s  the mos t  

significant p rope r ty ,  then the high efficiency of the 143  fabr ic  longitudinally 

orientatccl i s  proof of this a s sumpt ion .  T h e  l imitat ion on use of longitudi- 

nally o r ~ < ~ n t c d  14 3 f a b r i c  i s  that  the CorresponcIing 11oop strcangth i s  s o  l o \ \ ,  

con  5 

A compar i son  between the  bi-direct ional  181 tube and the hoop 

I (,tit I y M J I ~  ( '11 s p 1 i t t i 11 g ( o I n i n  c ' n  c c s it  111 a y bc coin t* a s c> 1 f 1) r o pa ga t i n g 
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c r a c k  and the whole tube sp l i t s  as has happened. 

f ab r i c ,  which has  a high spec i f ic  s t r eng th ,  actually r e p r e s e n t s  a m o r e  

re l iab le  c o m p r o m i s e  on the  u s e  of or thotropic  m a t e r i a l s  f o r  tube f r agmen t -  

ing energ; absorp t ion  p r o c e s s e s .  

The  b i -d i rec t iona l  181 

, 
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